網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

福衛三號十歲生日快樂 老衛星和團隊的奮鬥故事

趙軒翎
・2016/04/15 ・3273字 ・閱讀時間約 6 分鐘 ・SR值 520 ・七年級
706
福衛三號衛星與發射火箭。圖/國研院太空中心新聞稿

今天(2016.4.15)是福爾摩沙衛星三號(福衛三號)的 10 歲生日,這個由 6 顆微衛星組成的「氣象資料蒐集員」,10 年來勤奮的繞著地球量測全球的溫度、壓力、水氣等資料,成為氣象預報的重要資料來源。這豐富的資料庫還幫我們做了不少「國民外交」,全球氣象資料效益評比,雖然不是南波萬,但也已經是 Top 5。

如果直接說福衛三號是氣象衛星,對於它的功用,你可能第一個想法是:「就是氣象預報的衛星雲圖齁!」恭喜你……答錯了!福衛三號並不像是一個照相機,可以拍到一個颱風跑過來的畫面,若是打開它的資料庫,你可能只能看到一堆枯燥的數字。這些數字其實是福衛三號測量到的溫度、壓力、水氣等資料,我們所看到氣象預報的圖,是氣象學者透過分析這些數據去畫出來的。

福衛三號團隊中的任務科學家蕭俊傑說,福衛三號最大的貢獻就是我們一次發射六顆微衛星,形成一個衛星星系(Constellation)覆蓋整個地球,每一顆衛星在繞地球的過程中就能不斷收集全球各地的資料。目前已有超過 80 個國家,3000 多個科學家或氣象單位在使用福衛三號的資料庫,「這相當於替台灣做了十年的國民外交」,蕭俊傑說。

可是,福衛三號位於 800 公里的高度,怎麼量測到地球的氣象資料?其實,它是透過「掩星觀測技術」來蒐集這些資訊。簡單來說,兩顆衛星原本因為地球的阻隔看不到彼此,但卻收到了對方所傳來,原本應該直線前進的電磁波訊號,這表示電磁波經過了偏折,才得以轉變方向,到達另一個衛星的位置。電磁波的偏折,是因為電磁波由太空無介質的狀態,進入充滿介質的大氣層所造成的。(就像我們看到插入水杯中的筷子好像折斷了,事實上只是光線從空氣進入水中的折射現象。)

occ_experiment_real
掩星觀測技術。動畫/福衛三號科普教育探索網站

福衛三號衛星蒐集的訊號來自於原本就圍繞在地球外的GPS 衛星,這些 GPS 衛星的無線電訊號通過地球大氣層時産生折射,再被福衛三號的天線所接收。福衛三號就能根據收到的訊號,回推無線電經過地點的溫度、壓力和水氣等資訊。 福衛三號繞著軌道運行的過程中,可以接收到不同顆 GPS 衛星的訊號,在福衛三號最好的狀態下,每天大概可以收到超過 2500 筆資料(目前已經老化,沒辦法收這麼多筆資料了!)。

以往用掩星觀測技術接收的天氣資料大多停留在研究層面,但是台灣卻將整個氣象衛星星系建立起來,並且將這些資料公開給全球免費使用。

衛星發射不能射後不理 光讓 6 衛星就定位就花超過一年

福衛三號的六顆衛星由同一支火箭載上太空,這並不稀奇,但接下來這六顆衛星將如何平均分佈,才能收到全球的資料?

蕭俊傑說,當衛星和火箭在太空脫離的時候,衛星會以火箭當時的速度繼續往前飛行,受地球引力的影響繞著地球作圓周運動。這時六個衛星會在同一個軌道面上排排站,但這種站法,所有衛星接收到的都是同一個軌道面的資料。依照規劃,它們六個必須平均分配到地球的六個軌道面。看來發射成功後,太空中心團隊不能只是擁抱歡呼,還得花一年多的時間讓這六個衛星各就各位。

4ss
福衛三號軌道示意圖。圖/TACC

火箭發射後將福衛三號帶到 550 公里左右,人造衛星在這個高度開始作圓周運動。但是由於地球並非正球形,地心引力不是剛剛好指向球心,就會造成繞地球軌道運行的衛星產生偏移。在 550 公里的福衛三號,軌道面每天會偏2.3度,這給了團隊一個機會將六顆衛星分開。

當衛星飛得越高,受到地心引力造成軌道面偏轉的現象會越小。當福衛三號飛在 800 公里的高度時,每天偏轉的角度就只剩 2 度。蕭俊傑說,運用這 0.3 度的差距,我們只要將六顆衛星中的一顆移到 800 公里高度,90 天過後這兩個不同高度的衛星運行的軌道面就差不多相差 30 度。也就是說,科學家每 3 個月移動一次衛星的高度,要經過 15 個月的時間才可以將六顆衛星安置好,讓他們可以包圍整個地球。

這概念聽起來很簡單,好像只要時間到開一下衛星的引擎,讓它飛到達定點再停下來就好。這你就大錯特錯了!「550 公里飛到 800公里,說得簡單,但其實很難。」蕭俊傑說,福衛三號是藉由噴氣來讓自己往上升,但衛星一噴氣很容易翻覆,因此每次往上飛一下就需要趕緊檢查衛星的「姿態」,是否偏離或翻覆,如果有這些狀況就需要進行調整。

這些調整並不是隨時都可以執行。在地球的操控團隊,只能在衛星經過接收站時才能和衛星聯繫,並且交代衛星接下來要進行的任務。福衛三號環繞地球的方式為通過南北極的「繞極衛星」,每次環繞的週期大約為103分鐘,經過接收站的時間差不多只有 10 分鐘,因此團隊得抓緊時間好好把握這寶貴的「通話時間」。(怎麼好像在等著打電話的阿兵哥~)

當太空中心每次操控這個「佈軌任務」可以說是如臨大敵,希望確保衛星們都可以順利、準時到達 800 公里的高度。蕭俊傑說,這段時間團隊需要24小時輪班不斷監控,要在衛星接觸接收站前 20 分鐘集合,接收訊號 10 分鐘,結束後還得需要針對問題討論。推一顆衛星上 800 公里要花多久的時間?蕭俊傑說,如果衛星不聽話,花上好幾天都有可能,就要看情況順不順利,而累壞了但又不敢鬆懈的團隊們,則是抓緊時間在中間空檔小歇一會,準備下一輪的衛星通訊。

在佈軌任務的過程也是有一些沒那麼完美之處,其中一顆衛星就沒有順利到 800 公里,僅達到 700 多公里的高度。雖然如此,但也不太影響福衛三號六顆衛星全球包覆的計畫。

為什麼要讓遠在天邊的衛星,告訴我們地面天氣狀況?

但為什麼我們需要六個遠在800公里外的衛星,來告訴我們地球的溫度、壓力、水氣,地面量測不是比較準嗎?我們一般拿溫度計量測室溫,頂多就是知道這個空間內的溫度。但對於福衛三號所測到的一筆訊號,其實是從地面到 40 公里之間每 100 公尺的溫度、壓力和水氣資料,這就是在地表量測所沒有辦法做到的。此外,地球許多地區沒有人居住,如太平洋等海洋中央、極區等,我們也不可能特別到這些地區設很多氣象站,也使得這部分的天氣資料總是比較少。但透過福衛三號的資料,我們就能彌補這部分的缺漏。

福衛三號的資料對於我們最最直接的幫助,就是中央氣象局能夠根據這些資料進行每天的天氣預報。即使福衛三號是太空中心所進行操控,但是它儲存氣象資料的主機卻不設在太空中心,而是在中央氣象局,就是為了要讓氣象預報員能更迅速獲取到最新的資訊。

福衛三號老了  年輕壯丁七號將接棒氣象任務

經過十年,福衛三號逐漸老化,目前六顆衛星只剩下五顆還有固定在和地面接收站聯繫,接收到的資料量也下降。太空中心的團隊會這樣坐視不管嗎?當然沒有。太空中心目前也已經在準備福衛七號,即將接替福衛三號的任務,繼續收集全球的天氣資料。

福衛七號當然也不只是新的福衛三號,它也希望可以能提供更多的氣象資料。

前面我們說到福衛三號是「繞極衛星」,不管是哪一顆都會經過南北極,這樣得繞行方式也使衛星在靠近極區、高緯度地區蒐集到的資料點較多。而台灣偏偏就是處於低緯度,這樣的氣象資訊蒐集其實對於我們自己較不優,但要怎麼改善呢?

福衛七號這次預計要組成 13 顆衛星的星系,有 7 顆仍像三號一樣繞南北極,但有另外 6 顆將以「低傾角」的方式運行,也就是這些衛星將不再經過南北極,而是比較偏向繞行赤道的較低角度繞行,藉此也就能增加中低緯度的資料蒐集。蕭俊傑說,以往三號的接收站主要是在北極,但當這新的低傾角運行的衛星不再經過北極,就得尋找新的接受站。不只如此,這樣的運行模式將會是「地球也在轉,衛星也在轉」,接收訊號的地點不再只是北極,時間也不再是固定的每 103 分鐘一次,這會造成地表的操作團隊「時間表大亂」啊!

7-5
福衛七號 6 顆低傾角衛星軌道示意圖。圖/國研院太空中心

福衛三號發射滿 10 周年,原先只預期它執行 5 年的任務,現在已經整整增加了一倍的時間。在祝它生日快樂之餘,也感謝這一組衛星讓台灣對於全球氣象有相當大的貢獻。現在距離福衛七號升空,並且完成佈軌還有一段時間,請福衛三號與太空中心團隊再繼續加油囉!


 

文章難易度
趙軒翎
17 篇文章 ・ 2 位粉絲
在「一日生科,終身科科」的年代,即使鬧家庭革命都堅持要念生科,卻在畢業之際決定走出實驗室找尋新的出路。因緣際會就這麼踏入了科學傳播領域,雖然一路跌跌撞撞,但仍相信自己可以用知識改變這個世界。聯繫方式:scimonth.chao@gmail.com


0

1
1

文字

分享

0
1
1

天文影像工具也能找腫瘤?——臺灣首創 3D 數位病理影像暨 AI 分析平臺

科技大觀園_96
・2022/01/23 ・2878字 ・閱讀時間約 5 分鐘

攝影師運用影像,留存許多珍貴的記錄,講述不少精彩的故事。但影像的力量,可不僅限於此。科學家和醫生也拍照錄像,只不過對象不是一般人事物,而是遙遠的星辰,或微小的組織細胞。而臺灣的科研團隊,更成功讓傳統病理影像突破 2D 平面限制,完整展現 3D 全貌,幫助我們看清病魔的真面目,奪得搶救性命的機會。

為什麽癌症大魔王如此棘手?

在臺灣十大死因排行榜上,癌症已蟬聯榜首將近四十年。原本安分工作的人體細胞,可能受到細菌或病毒的感染、環境中的重金屬、放射線等致癌因子的影響,走上叛變、不正常增生一途,變成惡性腫瘤——也就是癌症。癌細胞會破壞各種重要臟器,掠奪體内大部分營養,最終可能造成人體因器官衰竭、營養不良、併發症而死亡。

十大死因
109 年國人十大死因。(資料來源:衛生福利部

癌症療法中,化療是以化學藥物來毒殺癌細胞,卻因為專一性低,讓病患往往傷敵一千,自損八百。後來發展出的標靶藥物療法,雖然不會無差別攻擊,但治療效果有限,有些種類的癌症更可能出現抗藥性。狡猾的癌細胞,還會產生抑制免疫細胞活性的蛋白質,來避開免疫系統的偵察和追擊。而 2018 年獲得諾貝爾生理醫學獎的「免疫療法」,就是以投放癌細胞表現的蛋白質之阻斷劑,來維持免疫細胞的戰鬥力的突破性療法。

然而,癌細胞也不是省油的燈。它們會與周圍細胞,如血管、纖維母細胞、免疫細胞等打成一片,藉由分泌各式細胞因子,創造利於自己生長的小天地,即腫瘤微環境(Tumor microenvironment)。例如,癌細胞會在微環境促進血管新生,且具備免疫抑制能力,讓免疫細胞鎩羽而歸。這麽一來,即使是副作用較低的免疫療法,也可能無用武之地。

當醫學邂逅天文學,跨領域碰撞出新解方

目前,癌症的診斷與療程的決定,主要還是仰賴切片檢測所得到的影像。所謂的切片檢測,就像到腫瘤細胞大本營去刺探敵情,醫生藉由手術開刀、内視鏡或針筒取得檢體組織,透過這第一手的情報,來判識腫瘤型態和病情嚴重程度,才能擬定對抗癌細胞的有效戰略。

麻煩的是,顯微鏡下的切片樣本只能看見同一平面上的細胞間交互作用,組織上還有用來標示特定蛋白質活細胞的螢光染劑。要把有著會互相干擾螢光訊號的樣本影像,拼接成可以觀察細胞交互作用的三維影像,可讓腫瘤學家傷透了腦筋。不過這個難題的解方,就剛好掌握在以望遠鏡觀察無數星星的天文學家手中!

有著不同特徵的衆多天體,就像是組織中發出不同螢光訊號、數百萬計的細胞。天體在宇宙中的相對位置與相互關係,也類比於細胞間的交互作用。這般異曲同工之妙,讓美國約翰 · 霍普金斯大學的腫瘤學家和天文學家決定並肩作戰,利用天文學的影像處理工具,來建立分析腫瘤切片影像的模型,這個跨領域碰撞的研究成果——AstroPath,更在今年 6 月登上 Science 期刊。

天體
有著不同特徵的衆多天體,就像是組織中發出不同螢光訊號、數百萬計的細胞。圖/pixabaywikipedia

臺灣打造全球第一個 3D 數位病理檢驗暨 AI 分析平臺!

腫瘤學家和天文學家的跨界合作,大大提高了組織切片影像分析的效率,表現令人贊嘆。不過臺灣研究團隊跑得更前面,直接突破傳統薄切片的限制,以獨家專利取得組織完整的立體影像,還進一步藉助人工智能之力,創立全世界首個 3D 數位病理檢驗暨 AI 分析平臺!

這個實現 Taiwan No.1 的團隊,緣起於國立清華大學生科系的楊嘉鈴教授研究團隊,邀請清華大學腦科學中心江安世院士團隊、分子與細胞生物所張大慈教授團隊及清華大學腦科學中心林彥穎研究員,携手合作克服過去 3D 組織影像的技術瓶頸。透過科技部價創計劃的輔導,承接了光電、生醫、影像及 AI 各領域最先進技術的捷絡生物科技股份有限公司 (JelloX Biotech Inc.) 在 2018 年成立。

捷絡生技獨步全球的病理檢驗平臺,包含了關鍵的三大部分:(1)快速組織澄清、(2)高速影像擷取及(3)3D 人工影像智慧分析。

流程示意圖
3D 人工智慧影像分析流程示意圖。圖/捷絡生技公司

過去 3D 組織影像無法實現,最大的難點,在於無法突破組織的透光障礙。捷絡生技專利化的光學組織澄清技術,最厲害之處是讓檢體樣本不被破壞就可以「變透明」,達到清水般的穿透率。傳統樣本處理,會經過物理切片及脫水,組織結構發生形變無可避免,讓病理全貌難以被量化和標準化來進行評估。但這項獨家的組織澄清處理技術,可最大程度保存樣本原來的面貌,還能讓樣本進行重複染色,再利用於各式生物檢驗。更重要的是,不再是單一切面的樣本,讓全自動影像掃描擷取,從不可能變得可能。

把檢體樣本透明化之後,研究團隊接著以高速鐳射顯微鏡,對樣本進行全身掃描後,數位縫合平行多叠影像。只要搭配適當的染色技術,就可迅速取得比傳統檢測還多百倍資訊量的高精度 3D 腫瘤影像。這些病理組織樣本的全景 3D 細節,讓醫生可以更清楚判別癌細胞的型態、分佈與周圍細胞的交互作用。

研究團隊也沒有停留在 3D 影像產製的完善,更抓緊大數據、巨量分析的趨勢,目標是要提供 AI 自動化病理組織影像分析。研究團隊建立不同癌症的 3D 數位病理影像資料庫,讓電腦進行機器學習,透過癌組織的特徵辨識訓練,目前已可得到超過 90 % 的準確度。AI 自動化分析能克服傳統人工判讀模式潛藏的誤差(如不同判讀者的差異、視覺疲勞與檢體採樣量不足等問題),大大減輕臨床病理醫師的工作負擔,加快診斷的效率。癌症的治療,就像與死神賽跑,所以盡速決定對風險最小、成效最佳的療法,對提高病患的存活率至關重要。

未來,捷絡生技這個領先全球的 3D 數位病理檢驗暨 AI 分析平臺,預期可實際應用在檢測藥物的穿透性、篩選適合免疫療法的病患、分析腫瘤微環境等方向。不管是從美國或是臺灣的例子,都讓我們看見不同領域相互激蕩的成果,並非止步於學術象牙塔的研究,而是可以被實際應用在日常生活中的技術。

參考資料


 

科技大觀園_96
141 篇文章 ・ 21 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。