Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

病毒有多狡詐?蛋白質裡包著什麼壞消息?——《下一場人類大瘟疫》

azothbooks_96
・2016/02/20 ・3948字 ・閱讀時間約 8 分鐘 ・SR值 595 ・九年級

病毒很難在試管內培養,因此早期研究人員看不到它們,在實驗室內無從著力,不過那也是探究病毒本質的一條線索。把病毒擺進含有化學營養成分的培養基裡面,它並不會生長,這是由於病毒只能在活細胞裡面複製。用專業術語來講,它是「絕對細胞內寄生生物」(obligate intracellular parasite)。病毒的尺寸很小,基因組也很小,精簡到只足夠讓它伺機進行依附式生存。它自身不含有繁殖機具。它四處揩油、偷盜。

伊波拉病毒 Source: A História e seus fatos curiosos

「很小」是指多小?普通病毒大約為普通細菌的十分之一大小。採用公制單位來說,圓形病毒的直徑大約從十五奈米(也就是十億分之十五米)到三百奈米不等。不過病毒並不都呈圓球形,有些呈圓柱狀,另有一些像繩索呈細長狀,還有些看來就像拙劣的未來派建築或登月小艇。不論是哪種形狀,病毒的內部容積都十分微小。塞在這般細小容器裡面的基因組,也相應有其侷限,核苷酸數目從兩千到最多約一百二十萬不等。

相較而言,小鼠的基因組所含核苷酸數目約為三十億。界定一個胺基酸需要三個核苷酸鹼基,構成一個蛋白質平均約需要兩百五十個胺基酸(不過有些蛋白質還大上許多)。基因的用處就是製造蛋白質;細胞或病毒內的其他一切事項,全都是後續反應的產物。所以只含區區兩千個字碼的基因組,甚至含一萬三千個(流感病毒)或三萬個(SARS 病毒)字碼的基因組,都可說是非常寒酸的工程規格。然而,即便以微小得只能編寫出八到十個蛋白質的基因組規模,病毒卻仍有可能相當狡猾,而且表現出高度效能。

Source: wikipedia

病毒面對四項基本挑戰:如何從一個宿主轉到另一個宿主身上;如何鑽進那個宿主體內的細胞;如何接管那顆細胞的配備和資源,來生成自己的多重副本;還有如何回到外界—擺脫細胞,離開宿主,繼續侵入下一個宿主。病毒的結構和基因功能都打造得非常精簡,堪可達成這些使命。

-----廣告,請繼續往下閱讀-----

彼得.梅達華(Peter Medawar)爵士是英國的傑出生物學家,和伯內特在同一年獲得諾貝爾獎,他把病毒定義為「用蛋白質裹著的壞消息」。梅達華心中所想的「壞消息」是遺傳物質,這種東西利用宿主生物的細胞來藏身、繁殖,同時經常(卻非總是)對宿主造成傷害。病毒的蛋白質包裹材料稱為衣殼(capsid)。衣殼也稱為殼體,具有兩種功能:能在必要時保護病毒的內部構造,並協助病毒進入宿主細胞。位於細胞外的個別病毒單元,都是完整的顆粒,稱為病毒體(virion)。衣殼也決定病毒的外形。

舉例來說,伊波拉病毒和馬堡病毒的病毒體都呈長絲狀,因此劃歸為線狀病毒這一類。其他有些病毒的顆粒呈圓球形或卵圓形,另有些則呈螺旋形或者狀似二十面體(就像巴克明斯特.富勒[Buckminster Fuller]設計的足球結構)。第一型 HIV 顆粒呈球形。狂犬病毒體的模樣就像子彈。一碟伊波拉病毒體混亨德拉病毒體,看來就像髮絲細麵拌一些酸豆醬。

狂犬病毒 Source: A História e seus fatos curiosos

許多病毒都額外包覆了一層套膜(envelope),套膜不只由蛋白質組成,還包含取自宿主細胞的脂質分子—某些情況下,病毒體脫離細胞時會從細胞膜把脂質一併帶走。病毒體的套膜外表面有可能滿布大量尖刺狀分子突起,就像老式水雷的引爆觸桿。這些尖刺具有非常重要的功能,每種病毒分別具有專屬的尖刺,構造就像鑰匙,能與目標細胞外表的分子鎖匹配;病毒體靠著尖刺,讓自己附著上目標細胞,就像太空船和另一艘太空船對接,接著尖刺就打開入口侵入。

Source: study blue

尖刺的專一性不只約束特定病毒能感染的宿主種類,還侷限該病毒可以用最高效能侵染的細胞種類—神經細胞、胃細胞、呼吸道上皮細胞—從而決定病毒有可能引致哪種疾病。儘管尖刺對病毒具有這等用途,卻也成為容易遭受攻擊的弱點所在。它們是受感染宿主免疫反應的主要標靶,白血球製造的抗體分子能抓住尖刺,防止病毒體附上細胞。

-----廣告,請繼續往下閱讀-----

可別把衣殼和細胞壁或細胞膜混為一談,這些結構只是功能相仿。自從病毒學創建之初,學界就從反面角度來定義病毒(沒辦法用濾器篩除、沒辦法用化學營養成分來培養、不完全算是活的),最基本的反面公設則是,病毒體並不是細胞。病毒的運作方式和細胞不同,不具備和細胞相同的能力或弱點。這些特點反映在一件事實上,病毒不怕抗生素—抗生素是一類很有價值的化學物質,能用來殺滅細菌(細菌也是細胞),或起碼能妨礙細菌生長。

青黴素(盤尼西林)的作用是阻止細菌製造細胞壁。胺羥芐青黴素是青黴素的相似合成物質,也有相同的功能。四環黴素(tetracycline)能干擾細菌的內部代謝作用,妨礙細菌製造生長、複製所需的蛋白質。病毒沒有細胞壁,也沒有內部代謝作用,因此對這類殺菌藥劑的效用毫無所懼。

病毒衣殼內部一般都只含遺傳物質,也就是能製造出具有相同模式的新病毒體的一組指令。這組指令只有在病毒介入活細胞的運作之後才能執行。病毒的遺傳物質本身可為 DNA 或 RNA,實際就看是該病毒屬於分類學上的哪一科而定。兩類分子各有優缺點,不過都能記錄資訊並表現出來。含 DNA 的類群包括疱疹病毒、痘病毒(poxvirus)和乳突病毒(papillomavirus);此外還有六個你從來沒聽過的病毒科也含有 DNA,好比虹彩病毒(iridovirus)、桿狀病毒(baculovirus)和肝炎病毒(hepadnavirus,其中一種會引致 B 型肝炎)。

虹彩病毒(iridovirus)Source: all posters

其他多科病毒則把遺傳資訊儲存成 RNA 型式,包括線狀病毒、反轉錄病毒(retrovirus,例如聲名狼藉的第一型 HIV)、冠狀病毒(含 SARS 冠狀病毒),以及其他多達約十二科的病毒,比如麻疹病毒、流行性腮腺炎病毒、亨德拉病毒、立百病毒、黃熱病毒、登革病毒、西尼羅病毒、狂犬病毒、馬丘波病毒、胡寧病毒、拉薩病毒和屈公病毒,加上所有漢他病毒、所有流感病毒以及普通感冒病毒。

-----廣告,請繼續往下閱讀-----
登革病毒 Source: A História e seus fatos curiosos

DNA 和 RNA 的不同之處,決定了各種病毒之間一項極端重大的差異:突變率。DNA 是雙股分子,也就是著名的雙螺旋,因為兩股長鏈藉由核苷酸鹼基對之間非常獨特的關係匹配在一起(腺嘌呤只與胸腺嘧啶配對,胞嘧啶只與鳥嘌呤配對),因此自我複製時,若鹼基的位置出現錯誤,一般也都能夠修正過來。這種修正作業由 DNA 聚合酶負責執行,這種聚合酶能夠根據其中一股催化建構出新的一股 DNA。倘若腺嘌呤放錯位置,與鳥嘌呤配對(腺嘌呤不是鳥嘌呤的正確對象),DNA 聚合酶能認出錯誤,退回到前一個配對,修正錯誤的結合,接著繼續進行下去。所以多數 DNA 病毒的突變率都相當低。

v4
HIV Source: A História e seus fatos curiosos

RNA 病毒是以一條單鏈分子編碼形成,沒有這種修正配置,沒有這種搭檔系統,沒有這種負責校讀的聚合酶,因此得承擔高出數千倍的突變率。(在此請各位注意,有一小群 DNA 病毒把遺傳密碼編寫在單股 DNA 上,突變率也都很高,就像 RNA 病毒。同時也有一小群 RNA 病毒具有雙股分子。凡有規則,就有例外。不過這裡我們就不理會那些次要的異常事例,因為這件事本身已經夠複雜了。)這個基本要點十分重要,我還要再講一遍:RNA 病毒的突變頻率漫無節制。

突變會帶來新的遺傳變異,變異是天擇的運作原料。突變大多有害,會帶來嚴重功能障礙,把突變型生命體推上演化絕路。不過偶爾突變巧具用途,並能適應環境。突變出現得愈頻繁,生成優質突變的機會也愈高。(突變愈多,則生成有害突變的機率也愈高,這會害死病毒;也因此突變率有最高上限。)所以 RNA 病毒的演化速率,有可能高於地球上的其他任何生物。也就是這樣,它們才那麼反覆無常、難以逆料,又那麼難纏。

儘管梅達華曾以妙語評斷,但卻非所有病毒都是「裹著蛋白質的壞消息」—起碼對於受感染宿主來講,病毒不見得都是壞消息。有時甚至是好消息,某些病毒能為宿主提供有益健康的服務。「感染」不必然都會伴隨出現重大損害,這個詞只代表某種微生物已建立起勢力。病毒不見得必須先讓宿主生病,才能達成任何成果。它的私利目標只是能夠複製,並傳播出去。病毒會進入細胞,沒錯;接著擾亂細胞的生理機具來自我複製,沒錯;而且病毒離開時還往往會摧毀那群細胞,這也沒錯;不過遭破壞的細胞或許還沒有多到會帶來真正的損害。病毒有可能悄無聲息地棲居宿主體內,不造成破壞,只適度複製,並從一個宿主感染到另一個宿主身上,也不引發任何症狀。

-----廣告,請繼續往下閱讀-----
漢他病毒 Source: wikipedia

舉例來說,病毒和儲存宿主的關係,往往牽涉到這樣一種休戰協定,有時是歷經長遠交往和許多世代的相互演化適應才達成這樣的狀況,病毒變得愈來愈溫和,宿主也變得愈來愈寬容。這也正是定義儲存宿主的部分要項:沒有症狀。並非所有病毒與宿主的關係都朝著這種友善的狀態演變,這是一種特殊的生態平衡型式。

就像其他所有生態平衡,這也是一種為期短暫的偶發臨時狀態。一旦發生溢出事件,把病毒送進了一種新的宿主,停戰協定就廢止了。寬容性並不會隨之轉移,平衡局勢打破了,嶄新的關係就此開展。病毒才剛在陌生宿主體內站穩腳跟,它有可能是個不惹是生非的過客,也可能惹出些許事端,不過也或許是苦難的根源。這就要看情況囉。

列印本文摘自泛科學 2016 年 2 月選書《下一場人類大瘟疫》,漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

1

1
1

文字

分享

1
1
1
被垃圾科學耽誤的人生:哈沃德的冤獄與平反——《法庭上的偽科學》
商周出版_96
・2024/01/04 ・4615字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

紐約市沃斯街四十號,無辜計畫

哈沃德的故事:因被冤枉身陷囹圄三十四年

基思.艾倫.哈沃德可以說是一名倖存者。他被維吉尼亞州錯誤定罪,但是逃過死刑執行。而且還是兩次。梅克倫堡矯正中心在一九八四年爆發了所謂的「大逃亡」(The Great Escape)1,那是有六名死囚越獄的空前維安漏洞,哈沃德面對其後的嚴密禁閉也倖存了下來。哈沃德面臨過殘酷的獄警、僅存的希望全被澆熄、父母的死訊,他的身分也被侵蝕到只能淪為 1125797 號罪犯,但是他倖存了下來。

他在維吉尼亞州刑罰體系中所有最嚴酷的監獄裡倖存下來了,先是梅克倫堡,接著是奧古斯塔(Augusta),然後又在蘇塞克斯二監(Sussex II)待了十年,還有現在的諾托韋,他在諾托韋那樣環境惡劣的監獄醫務室裡進行了重大的腸道手術,並且活了下來。雖然很勉強。

圖/unsplash

在被錯誤監禁的三十四年裡,哈沃德排的這條等待救援的隊伍從未向前移動。大量監禁讓他身邊的囚犯如雨後春筍般湧現,因此這條隊伍只會越排越長。他最初因為傑西.佩隆的入室謀殺案和對他妻子特蕾莎.佩隆的性虐待案而被關到梅克倫堡時,維吉尼亞州每十萬名居民中有大約一百五十人遭到監禁。

當我們發現特蕾莎用過的性侵採證套組、把它送去做 DNA 檢驗時,維吉尼亞州的監禁率已經超過每十萬名居民有四百五十多名囚犯,每十萬名黑人居民則是超過兩千四百人。2在那個看不見的國度裡,到底住著多少無辜的 1125797 號囚犯,我們不會知道。但是統計顯示,在維吉尼亞州和全國有數千名無辜的人被關在牢裡;他們大部分人都永遠不會再拿回他們的名字了。

-----廣告,請繼續往下閱讀-----
圖/unsplash

維吉尼亞州剝奪了哈沃德生命中的每一個里程碑。他沒能結婚,沒有小孩,沒有做過除海軍之外的其他職業。他在二十幾歲之後,除了監獄檔案的照片,就只有一張自己的照片。他具有指標意義的生日,三十歲……四十歲……五十歲……六十歲,都是在鐵牢裡度過的,他只是沒死而已。

事情一開始不是這樣的。他也曾經奮鬥過。他從獄中出庭為自己辯護一事,曾經讓他的有罪判決遭到撤銷。為他贏來一次重新審判的機會、再一次讓真相大白的機會。但是當陪審團第二次做出有罪判決、上訴法院也維持這個裁決時,哈沃德體內的鬥志突然被掏空了。他決定放棄,讓餘生都在監獄裡度過。就像他有一次對我說的:「我就待在牢裡等死算了。」

重新審判:不可靠的咬痕證據

就訴訟而言,二○一六年發現了性侵採證套組,州也同意進行檢驗,這使得前進的道路變得清晰。哈沃德和史蒂夫.錢尼不同,他不需要維吉尼亞州法院或是其他法院承認咬痕證據完全不可靠。他不需要新法律或是定罪完善小組就可以重返法庭。也不需要當初把哈沃德的牙齒和特蕾莎.佩隆大腿上的咬痕「配對」的六名牙醫取消他們的證詞。

圖/unsplash

哈沃德很幸運:他有 DNA 。檢測開始之後,就會像是一顆小圓石被丟出來,滾下山坡引起 被壓住的真相一波又一波的雪崩。其規模之大,會讓哈沃德甚至不需要重回法庭。

-----廣告,請繼續往下閱讀-----

他幾乎立刻就被排除在可能的嫌疑人之外,也就是說所有檢驗項目,包括性侵採證套組、凶手蓋在特蕾莎頭上的尿布,以及她被性侵時的沙發墊,上面的生物證據都不可能是他的。

我的辦公室裡傳來更多歡呼聲。這種感覺不同於最初發現物證箱時的那種驚喜。是好消息,但也是預期中的結果。無辜計畫法律團隊的每個人都相信基思.哈沃德是清白的,也都知道他是清白的。

圖/unsplash

之前在訴訟中移交的文件就已經證明了:刑事專家不實宣稱在犯罪現場收集到的血清證據,根據在 DNA 之前的血型技術無法確定。其實在審判之前就可以將哈沃德排除在取樣之外了。後來他又被排除在 DNA 證據之外,就是理所當然的了。

接著,我們得知 DNA 分析人員可以從保存的生物樣本中發展出完整的基因輪廓。這表示除了可以排除哈沃德是 DNA 的來源,甚至還有可能得知到底是誰的 DNA ;不同於史蒂夫.錢尼案中的 DNA 已經受到毀損,只能夠做到排除錢尼。

-----廣告,請繼續往下閱讀-----
圖/unsplash

從每一件證據中提取的 DNA 輪廓都沒有更新的資訊。它們都來自同一名男性,既不是基思.哈沃德,也不是特蕾莎的丈夫傑西。反而是一名陌生人把他的 DNA 留在整個犯罪現場。發現證據的位置和特蕾莎的證詞完全一致,因此顯得更有說服力,這份證據也與哈沃德自己的陳述一致;哈沃德說他從來沒有進過佩隆家。

證人誤認是錯誤定罪一大主因?

這在大多數州就足以推翻有罪判決了。但也還是有可能出現荒謬的「沒被起訴的共同射精者」理論。不過,這個案件中有一名受害者還活著。特蕾莎強忍著痛苦和性侵她的人共度了三小時。她知道那天晚上只有一個入侵者。一名殺了她丈夫的凶手。一個「咬了她的人」。

圖/unsplash

早在 DNA 排除哈沃德之前,特蕾莎本人就為哈沃德的清白提供了最有說服力的證據:她拒絕指認哈沃德。哈沃德是因為咬了他的女朋友而被逮捕,而且還戴著手銬,在這樣容易誤認的情境中,特蕾莎都沒有指認哈沃德就是毀了她家庭的那名水手。

她的這個立場在兩次審判中都沒有絲毫動搖。許多犯罪受害者很可能會接受暗示,或是不論有意或無意,急著指認被警方確信是凶手的那個人。的確,證人指認時的誤認,通常是因為警方的建議而導致的無心之過,是錯誤定罪的一大主因。

-----廣告,請繼續往下閱讀-----

除了咬痕,另外的唯一證據就是駐衛指認了哈沃德。然而,即使在當時,他的證詞也是勉強得來而且不可靠的,我們得知在取得他的證詞時,用了可以「強化」記憶的祕密催眠,因此顯然缺乏可信度。

圖/unsplash

即使用催眠誘導的指認可以相信,不過駐衛也只是說在襲擊案發生當晚,他有看到哈沃德回到基地。是的,他是說那個人穿了血跡斑斑的制服,不過那人其實不是基思.哈沃德,而且在當時的紐波特紐斯,喝醉酒的水手在酒吧跟人打架,然後滿身是血回到船上,也不是什麼罕見的事。歸根究柢,不論證人指認的這番話具有多少分量,它都不代表哈沃德那天晚上有進入佩隆家。只有洛威爾.萊文和阿爾文.凱吉的專家證人證詞明確說出了這一點。而 DNA 也證明了兩位牙醫是錯的。

真正的兇手到底是誰!?

哈沃德的案件已經走向崩解。真正的證據(affirmative evidence)不是指向他有罪,而是指向另一個第三人。無論在哪一州,這個「新發現」的證據應該都對推翻任何一個有罪判決綽綽有餘了,但是維吉尼亞州和大多數州都不一樣。維吉尼亞州是全美國對無罪主張最有敵意的州之一。被判無期徒刑的囚犯很少有活著走出來的。要讓無辜者重獲自由,通常前提是必須破案。

然後「聯合 DNA 索引系統」(CODIS)就找到他了:在訴訟中喊出了「將軍!」

-----廣告,請繼續往下閱讀-----
圖/unsplash

根據美國的 DNA 數據庫「聯合 DNA 索引系統」,確定性侵取證套組、沙發墊和尿布上的 DNA 是來自一名叫做傑里.克羅蒂的人。在這起性侵謀殺案發生時,克羅蒂是卡爾文森號航空母艦的一名水手,這艘航空母艦當時停泊在紐波特紐斯的船塢。

基思.哈沃德也在這艘船上服役。克羅蒂和哈沃德長得有點像,他曾經因為綁架罪而在俄亥俄州的監獄服刑,並在十年前死於獄中。在哈沃德入獄期間,他還犯下其他暴力犯罪,但是都沒有像一九八二年對佩隆一家的暴行那樣殘忍;當然,除非克羅蒂還犯了其他沒有被偵破的案件,或是被以為已經破案的犯罪。

全美國對無罪主張最有敵意的州?

媒體壓力再次升高。但不是像一九八二年那樣,當時行凶的水手逍遙法外,因此有兩名美國參議員敦促要盡速逮捕他;這次的壓力是要推翻多年前因為媒體推波助瀾而造成的有罪判決。

圖/unsplash

弗蘭克.格林(Frank Green)是《里奇蒙時報》(Richmond Times-Dispatch)的記者,他長期以來都對維吉尼亞州對無辜者的敵意有批判性觀察,他詳細報導了哈沃德的故事,從聲請推翻他的有罪判決的那一刻起。連諾托韋裡面的囚犯都注意到了。

-----廣告,請繼續往下閱讀-----

哈沃德在監獄裡的朋友們都為他打氣。他們開始從監獄圖書館的報紙上剪下與哈沃德案件有關的新聞剪報,並保留給他。隨著哈沃德的案件從一團混亂的垃圾科學訴訟,轉變成教科書等級的 DNA 平反案件,格林的報導刊登位置也越來越靠近頭版。當哈沃德的聲請在等待維吉尼亞州最高法院的決定時,他成了頭版新聞,而當 DNA 檢驗證明哈沃德是無辜的時候,他直接登上頭條。

圖/unsplash

既然已經在「聯合 DNA 索引系統」找到符合者了,但凡有一點基本的正當程序概念,都會覺得繼續監禁哈沃德是不可接受的。他顯然是無辜的。任何殘存的反對意見都消失無蹤了。

總檢察長在一場匆忙召開的新聞發布會上,公開承認哈沃德是無罪的,並要求該州高等法院盡速對其聲請做出裁決。維吉尼亞州最高法院在第二天就宣布基思.哈沃德是一個無辜的人。

——本文摘自《法庭上的偽科學》,2023 年 12 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

原文注釋

  1. Bill McKelway, “From the Archives: How the 1984 Escape from Virginia’s Death Row Happened,” Richmond Times-Dispatch, May 30, 2009,瀏覽日期二○二一年七月五日,richmond.com/from-the-archives/from-the-archives-how-the-1984-escapefrom-virginias-death-row-happened/article_19ea1684-9af2-5d24-86ab-5875eaf2068c.html。 ↩︎
  2. Prison Policy Initiative, Virginia profile,瀏覽日期二○二一年七月五日,www.prisonpolicy.org/profiles/VA.html。 ↩︎
-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。