0

0
0

文字

分享

0
0
0

用曾雅妮的球桿,你也能成為高手

陸子鈞
・2011/11/06 ・1083字 ・閱讀時間約 2 分鐘 ・SR值 468 ・五年級

要怎麼幫助選手在運動中表現更好?告訴他們手上的球桿是高手用過的吧!一項新的研究發現,當選手相信他們正使用職業球員的二手推桿(putter),會顯著增進他們推球(putting)的表現。

科學家從1953年的《箭術與禪心》(Zen in the Art of Archery)中得到的靈感。該書的作者奧根.海瑞格(Eugen Herrigel)在書中談到,當他射箭表現不好時,會把弓給老師射幾箭,再拿回來射,表現便有進步;「弓似乎變得不一樣,變得更好拉、更順遂」。於是維吉尼亞大學(University of Virginia in Charlottesville)的大學生查理斯.李(Charles Lee)認為,這似乎是個有趣的心理學現象。「查理斯帶著問題來找我,然後我們說『OK,我們為什麼不能重複書中的作法?但換成高爾夫,可以確切地量化結果。」維吉尼亞大學的博士生莎莉(Sally Linkenauger)說到;現在她在德國馬克斯普朗克協會(Max Planck Institute)擔任博士後研究員。

李和莎莉找來41位熱中於高爾夫球的大學生在草坪上推球,一半的受測者被告知他們使用的是高級推桿;另一半則被告知使用的是班‧寇蒂斯(Ben Curtis,曾獲高爾夫高開賽冠軍,推球技巧非常有名)的推桿。「我們真的買了超貴的推桿,就跟寇蒂斯用的是同一款。」莎莉說。所有的受測者都聽過寇蒂斯這號人物。

在十次推球中,使用「名人用過」的推桿的學生,平均較另一組學生多進了1.5球。「如果我告訴你我能讓你的能力由10推桿增加1.5個推桿,很多高爾夫球選手會欣喜若狂!」莎莉提到。然而,研究並未顯示為什麼會發生,或許是安慰的效果,藉由一些讓你認為能使你達到目的的工具,或者高爾夫選手就是因為想到寇蒂斯和他精湛的球技,所以能表現良好。

-----廣告,請繼續往下閱讀-----

加拿大哥倫比亞大學的運動心理學家Mark Beauchamp提到,在運動中,自信心一直很重要。一般而言,當人對某些技巧有信心時,會有較佳的表現。他說「如果一個人認為這支推桿能讓他有較好的表現,或許能增加信心。」

賓夕法尼亞大學的心理學家Paul Rozin說,如果選手相信球具會「吸收」上一位使用者的能力,再藉由接觸傳給他自己,或許能產生信心。比方說,調查顯示,人們不會想穿希特勒穿過的衣服,即使他們知道惡魔不會依附在衣物上(議註:這屬於「負面接觸」)。「不過在研究中較少發現正面接觸的例子」Rozin說,有些人會想穿德蕾莎修女的衣服,或是用愛因斯坦的鉛筆,但大多數人則不在乎這些。而他認為高爾夫球的實驗非常棒,「因為研究團隊藉由精準的行為表現,找出正面接觸的證據。

或許在Yahoo拍賣,曾雅妮的二手球桿已經飆到天價了。

資料來源:ScienceNow: The Case of the Haunted Golf Club [27 October 2011]

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

10
4

文字

分享

2
10
4
尿急可以讓人做更好的決定,但這個決定不一定是好決定—— 2011 年搞笑諾貝爾醫學獎
雷雅淇 / y編_96
・2023/04/01 ・1828字 ・閱讀時間約 3 分鐘

車輪餅要選奶油還是紅豆?遊戲機該買 Switch 還是 PS5?要吃麥當勞還是肯德基?父母和伴侶落水應該先救誰?人生中會有很多時候需要做終極二選一,有選擇困難的時候怎麼辦?2011 年搞笑諾貝爾獎醫學獎的得獎研究提供了一個方法:憋尿。

生活大爆炸(The Big Bang Theory)裡,主角謝爾頓(Sheldon)在 PS4 與 Xbox 之間難以抉擇。

搞笑諾貝爾獎頒發給「讓人捧腹大笑,然後發人深省 (achievements that make people LAUGH, then THINK.)」的研究或事件,2011 年的醫學獎頒給兩個研究團隊,表彰他們證明:當人尿急的時候會做出更好的決定,但對其他事情來說這是糟糕的決定。這到底是怎麼一回事?

為什麼當人尿急的時候會做出更好的決定,但對其他事情來說,卻是糟糕的決定呢?圖/Pixabay

憋尿幫助你終極二選一?

荷蘭特文特大學行銷傳播與消費者心理學系的米賈姆 (Mirjam A Tuk) 從一次聽演講時不小心喝太多咖啡得到靈感,讓他想知道「當人們需要控制膀胱的時候會發生什麼事?」

於是他和研究團隊一起設計了實驗,一群喝一點水和另一群喝很多水的受試者,在 40 分鐘後水到達膀胱的時候,開始要受試者回答一系列的問題,例如「會選擇明天收到 480 元還是 30 天後拿到 900 元?」等問題。實驗發現,當人們很想上廁所、不得不控制膀胱的時候,反而更比較願意延遲滿足、變得更有耐心,且有助於控制衝動。

這結果令人驚奇的地方,因為許多心理學研究都支持過於克制反而會使人「自我耗盡 (ego-depletion)」,讓他們對其他事情更難以控制自己。米賈姆認為這可能是因為膀胱控制在某些程度上來說,是自動的、無意識的過程。

不過這不代表尿急就是好事,另一個一起得獎的研究則發現,當人很想尿尿的時候,注意力和工作記憶會顯著下降,而且糟糕的程度和酒醉(血液中酒精濃度 0.05%)、疲勞(持續清醒 24 小時)相似,而在尿尿警報解除後認知就會回到原來的水平。

當人很想尿尿的時候,注意力和工作記憶會顯著下降,就和喝醉時類似。圖/PIxabay

研究團隊讓八位健康成年人每 15 分鐘喝 250c.c. 的水,直到他們很想上廁所、再也忍不住為止,並在這個時候讓他們進行自評和認知測驗。

不過,為什麼要做這個實驗呢?研究成員之一、耶魯醫學院的皮特札克 (Robert Pietrzak)  教授解釋,有很多工作是無法隨時想去上廁所就能去上廁所的。例如:長途卡車司機、醫護人員等,這個研究提醒大家,當你在憋尿的時候,很可能會干擾正在執行的工作。

挑戰人類的憋尿極限?勸你還是不要比較好

人到底可以憋尿憋多久?會不會憋死掉?一天又會尿尿幾次呢?

膀胱是可以伸縮的器官,成年人的膀胱可以儲存約 400~500cc 的尿液,膀胱和大腦有直接溝通的專線,約四分之一滿的時候就會有尿意。尿尿的次數也和膀胱的大小有關,成年人平均一天尿尿 6~7 次,不過在 4~10 次之間都屬正常範圍;小小朋友和嬰兒的膀胱比較小,一天會尿尿 10 次或以上。

憋尿對身體的影響大多是長期累積而來的:如果沒有定期排空膀胱,最常見的是細菌滋生造成尿道感染,和因為都憋著導致膀胱肌肉在該放鬆的時候無法放鬆,極少極少出現憋尿憋到漲破膀胱的狀況。

偶而一兩次憋尿、試試看是不是會做比較理性的決定還無妨,但還是要養成想上廁所時不要憋太久,尿尿時不要急、要盡量排空的好習慣喔!

參考資料

  1. About the Igs
  2. The Impulsive client: theory, research, and treatment
  3. Inhibitory spillover: increased urination urgency facilitates impulse control in unrelated domains
  4. Bladder control – DW – 10/05/2011
  5. How needing a wee affects your decision making – Big Think
  6. Full Bladder, Better Decisions? Controlling Your Bladder Decreases Impulsive Choices
  7. IG Nobel prize goes to University of Twente researcher
  8. Lifespan researcher wins Ig Nobel Prize
  9. Ig Nobel Award Winners: Do Humans Think Less Clearly When They Have To Urinate? | HuffPost Weird News
  10. Why Having To Pee While Driving Is As Bad As Drinking
  11. Ig Nobel Prize: Humor and Science – Yale Scientific Magazine
  12. The effect of acute increase in urge to void on cognitive function in healthy adults
  13. How Long Can You Go Without Peeing? Risks, Complications, Concerns
所有討論 2
雷雅淇 / y編_96
38 篇文章 ・ 1295 位粉絲
之前是總編輯,代號是(y.),是會在每年4、7、10、1月密切追新番的那種宅。中興生技學程畢業,台師大科教所沒畢業,對科學花心的這個也喜歡那個也愛,彷徨地不知道該追誰,索性決定要不見笑的通吃,因此正在科學傳播裡打怪練功衝裝備。