0

3
0

文字

分享

0
3
0

感謝終於有人關心到地震成因

阿樹_96
・2015/04/24 ・3015字 ・閱讀時間約 6 分鐘 ・SR值 564 ・九年級

關於4/20花蓮外海的地震,還有很多更重要、值得關心的事啊!譬如從台北盆地的放大效應,探討台北還有多少建物不符合耐震標準?也沒有人討論已經斷了半年以上的海纜地震站,因為它是離震央很近的測站啊!少了一個站,我們也少了一次機會看看多一個海底測站對地震預警的幫助。而關於斷了線的海纜,也是幾天前就聊過的事,在此就不細談,我們就著重在目前多數關注焦點:地震的成因。

先簡單的提一下,地表的侵蝕作用可能會刺激地震發生這篇文章和土壤鬆軟導致地震發生兩件事是毫無關聯的,更不用說前者可以證實後者有可能,當你若知道地震發生的機制就會明白這當中的差異。而實際上還有很多迷思是大家沒注意到,譬如斷層、地震、板塊、地殼這些看似基本,卻只認識字而不知其內涵的東西。

聖安德列斯斷層

關於地震成因,很少人知道來龍去脈

地震真正的成因,是還未完全明瞭的,如果知道的話,那我們等同於可以「預測地震」(勿斷章取義,還有下文)。至於地震發生的「機制」,卻早有科學家從野外觀察、實驗、論證等各種嚴謹的科學方法提出理論:彈性回跳理論,簡單來說就是岩石受力產生破裂會產生錯動,形成斷層,破裂過程中釋放出的彈性波,就是我們感受到的地震。彈性回跳理論是美國地質學者李德(Harry Fielding Reid)在研究1906年舊金山大地震時提出,此時科學家連板塊是什麼都還不知道(韋格納在書中整合大陸漂移說也是1911年的事了),板塊學說則是經過了數十年的發展修正的學說,從大陸漂移、海底擴張、地震分布三種獨立的觀測結果,加上不斷的修正一些小錯誤,而成為現在熟知且中學教科書也常見的理論,而此理論正好可以解釋大多數因岩石受力破裂而發生的地震。

關於彈性回跳理論解釋斷層錯動機制,以平移斷層為例

到底有什麼因素會與地震成因有關?

好,至於為什麼岩石會受力的「原因」,包括很多的「因素」,像是板塊運動、地表侵蝕、岩漿活動……它是有像A+B+C+D+E….這麼多的因素,但科學家僅能分開來探討分析關聯,而每一個因素扮演的角色和尺度都不同,而板塊運動的部分可以特別拿出來提,是因為它的作用的時間、空間、提供的作用力等尺度都是最大的,自然也成為「最主要的原因」。

用打電動來比喻,地震的能量累積就很像是電玩角色的仇恨值,一旦仇恨值滿了,就可以放大絕(地震),但多了一些因數要考量,譬如侵蝕可能會稍稍加速,當然也有一些是會加速特快的情況(譬如附近有發生某些大地震),所以大絕要放(地震發生)的確切時間就有可能受一堆參數影響~~所以接下來我們來談某些這次提到的「外在因素」。

那麼新聞上說水庫、侵蝕、頁岩氣會誘發地震是為什麼?

這個問題的解答十分複雜,但可以訴諸科學,只是很難很難講的容易,因為我有嘗試卻失敗了。但現在還是要把這件事拿出來說…就是「庫崙破壞定律」和Byerlee’s law,前者會利用下圖的方式來詮釋岩石受力的情況,我們把岩石受力行為畫成下圖裡的半圓(這張圖是非常、非常、非常簡化的示意,其實還要包括岩石在三軸受力的情況,請自己google一下Mohr Circle Failure,很多岩石或材料力學都會講的比我的細又精準)。簡單來說當那個半圓越大,也就是正向和剪向力(參考下圖的第二部分)都變大時,一旦碰到紅色那條包絡線,岩體就會破壞,同時依尺度不同會釋放不同規模的地震波,這是用工程上物理、數學的方式來說明「斷層的破壞」。而會讓那個半圓改變大小或位置的因素,包括了孔隙水壓(就是岩石或土壤裡的空隙塞滿水後還產生了壓力)、上方的荷重以及水平的力量;而包絡線的斜率代表了斷層強度,當強度越弱時就越接近水平,就會呈現很少有地震但穩定的在滑動的現象。包絡線和X軸的截距,則是岩體的內聚力,當岩石越強,包絡線也會上移,越弱則向下移動。

columb1

如果您看不懂以上那一段也無妨,簡單來說任何對於地震力學的參數研究,無論是侵蝕、水庫、頁岩等等,都要去推估該參數對於岩體破壞的影響。以台灣的case來看,最主要的受力都是長期的板塊作用力,這個力量是穩定不變的,會變的就是其它外在因素,像是侵蝕旺盛就會減少上覆岩體的重力,但前提是「長期」的作用力下才會讓它的效果顯著,也就是數百年甚至更久的尺度,不是今天你雨突然下大了之後它就馬上發生地震了。反而水庫突然的蓄水所增加的應力還比較大,但是!也不是說蓋水庫就會有地震,而是得考量到當地的岩石性質和有無既有的斷層,因此建壩前,要先作地質評估,而建壩後也需要不斷的監測其誘發地震的特性。

所以,到底是颱風、大雨、侵蝕「 引發」地震,還是板塊作用?

因此,寫這篇文章的用意,在於簡單的說明「數量級」和「尺度」上的問題,有時我們容易被簡化報導給誤導方向,以颱風與慢地震的研究來說,如果看一下真正的慢地震的定義,其實會發現它的釋放能量方式、地點與我們熟知地震發生的位置差很多,至於「慢地震會減少大地震發生機會」,又是另一個對科學研究的誤解,以劉啟清老師的研究來說,它的重點在說「因為發現了慢地震的現象,所以解答了我們原先對當地板塊運動與斷層之間能量累積計算差異的原因,所以讓我們對於當地發生大地震的疑慮減低。」對我來說這樣的誤解就有如之前常聽到的「常發生小地震,就不易發生大地震」的誤會,因為小地震和大地震的能量等級差很多,不是說小的地震多就一定不會發生大的地震,只是長期小地震也必須是加入計算。

關於隱沒作用地區的慢滑移(慢地震)易發生位置示意,為圖中綠色部分,而紅色則為多數脆性變形產生的地震好發處。圖片來自http://www.gns.cri.nz/Home/Learning/Science-Topics/Earthquakes/Earthquakes-at-a-Plate-Boundary/Slow-Slip-Events
關於隱沒作用地區的慢滑移(慢地震)易發生位置示意,為圖中綠色部分,而紅色則為多數脆性變形產生的地震好發處。圖片來自GNS Science 

地質時間的尺度很難想像,上百年累積的作用力在一瞬間全部釋放,本來對人類來說就是很難理解的事,但大自然就是要花很多時間、心力去相處的事。好在我們的科學前輩也已建立基礎,只是另外要提醒一件事:站在巨人肩膀上看世界時,你也得確認你站的是正牌的巨人肩膀。講白一點就是:要先有科學精神、要先懂得立論基礎!

本文同時發表於作者部落格地球故事書

延伸閱讀與參考文獻

文章難易度
阿樹_96
72 篇文章 ・ 16 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策