0

0
0

文字

分享

0
0
0

生命起源,煮一鍋「長鏈RNA濃湯」

Zobot
・2015/02/20 ・1325字 ・閱讀時間約 2 分鐘 ・SR值 551 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

在早期的地球上,煮著一碗充滿化學原料的濃湯,稱作「原生湯」或「太古濃湯」,生命的起源就在那。RNA 鏈(單股螺旋核醣核酸分子)在海洋中到處漂浮,隨意地自己複製自己。後來呢,科學家知道這些 RNA 鏈一定會變得越來越長,準備好一個平台演化出複雜的生命:從阿米巴蟲、蠕蟲,直到最後有了人類。

目前大多數科學家認為,較短、擁有較少材料可以複製的 RNA 分子,因為複製得比較快,才能利於原始的生物演化成複雜的有機體。但現在有個新的研究卻提出相反的看法:在海底熱泉噴口附近,較長的 RNA 鏈可能躲藏在多孔洞的岩石裡,加上獨特的溫度條件,很有希望演化出複雜的生物。

海底熱泉噴口
來源:NOAA

海底熱泉噴口就是地殼的裂縫,會噴出非常燙的水,在早期的地球很常見,也比現今活躍。噴口裡的水營養特別豐富,有沒有可能是一個演化出複雜生命的推力?德國慕尼黑大學的實驗生物物理學家 Dieter Braun 和研究團隊,開始研究在熱泉噴口旁的岩石孔隙中的一個物理現象。

nchem.2155-f1
來源:Nature Chemistry, doi:10.1038

研究團隊假設,這個孔隙上下兩端開口,充滿各種長度的 RNA 分子溶液。在較靠近熱泉水流的底端,溶液密度會變得較低,因而在孔洞中上升。上升的溶液會從上方跑掉一些,更營養的水(密度較高的溶液)就會從下面補充進來,而留下來的溶液會下沉、擴散回到孔洞冷的那端。

熱泳(Thermophoresis)是個複雜的物理效應,會造成溶液中的帶電分子往較冷的水中聚集。較長的 RNA 分子帶較多電,比起短 RNA 分子會有更明顯的熱泳效應,因此較短的RNA分子比較可能從孔洞上端逃出,較長的分子則被困在孔洞中。孔洞持續有營養物質加入,這期間 RNA 很可能一直在複製。另外,這樣的溫度循環,也確實有助於分開兩條彼此「黏合」的 RNA ,使複製更容易發生。

為了測試這個假設,Braun 和他的同事們用許多很小的玻璃毛細管排成網狀,從一端加熱,建造一塊模擬的多孔岩石。他們將 DNA (雙股螺旋去氧核醣核酸分子)片段從毛細管底部沖洗進管中;嚴謹一點,他們應該使用 RNA 做測試,但 Braun 說明,因為還沒有好方法可以在實驗室中複製 RNA,而 DNA 則有一個簡單的標準程序稱作「聚合脢連鎖反應(Polymerase chain reaction, PCR)」可大量複製,並且 DNA  所有的熱泳行為或受困在管中的機制與特性都與 RNA 相同。

實驗進行時,研究人員發現較長的單股 DNA 比較容易聚集在管中,因此複製的情形較好、數量增長,而較短的單股DNA 會被稀釋到消失。

可是以上並無法說服加州大學聖地牙哥分校的海洋化學家 Jeffrey Bada,他認為海底熱泉噴口或是任何其他早期地球上的棲息地,都不可能提供如同實驗室中所打造的條件,「這個模擬過程不太可能發生在地球或其他尺度這麼大的地方」。

加州大學聖塔芭芭拉分校的生物化學家 Irene Chen 則不太贊同他,她認為這個研究對於瞭解環境開啟另一扇門,生命起源的環境不再局限於火山環境,還有其他可能有助於複雜生命演化的環境類型。

參考資料

  • Science/AAAS | NEWS:How Earth’s earliest life overcame a genetic paradox (26 Jan. 2015)
  • Kreysing, M., Keil, L., Lanzmich, S., & Braun, D. (2015). Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nature Chemistry.
文章難易度
Zobot
10 篇文章 ・ 0 位粉絲
PanSci 實習編輯 | 主修大氣科學。喜歡弄文字、玩音樂。傾向自然,不管是拿來讀的那種,渾身散發出來的那種,還是可以去野餐的那種。

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

1
1

文字

分享

0
1
1
長達 5 億年的空白:真核生物從何而來?「洛基」是人類起源的解答嗎?──《纏結的演化樹》
貓頭鷹出版社_96
・2022/08/06 ・2927字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

有細胞核的真核細胞,究竟從何而來?

當渥易斯去世時,還在爭議中的最大謎團之一便是真核細胞的起源,也就是說,我們生命最深處的開端,直至今日仍然沒有定論。

當時真核細胞的起源目前還沒有一個定論,不過可以確定的是,粒線體扮演著相當關鍵的角色。圖 / Pixabay

如果像渥易斯在一九七七年宣布的那樣,存在三個生命領域,其中一個領域是真核生物,包括所有動物、植物、真菌,和所有細胞裡面含有細胞核的微生物,那麼這個最終演化出人類和我們可見的所有其他生物的譜系的基礎故事是什麼?是什麼讓真核生物如此不同?

是什麼讓牠們走上如此不同的道路,從細菌和古菌的微小和相對簡單,走向巨大而複雜的紅杉、藍鯨和白犀牛,更不用說人類和我們對地球的所有特殊貢獻,像是美國職棒、抑揚五步格和葛利果聖歌?哪些部分以及哪些過程組合在一起,形成了第一個真核細胞?

如此重大的事件大概發生在 16 億到 21 億年前之間。這個足足有 5 億年之久的窗口,反映當前科學不確定性的程度。

最關鍵的線索?粒線體與「內共生理論」

不同陣營的意見強烈分歧,都提供了一些假設。

岩石中早期微生物形式的化石證據,並沒能提供多少解答,科學家還是從基因體序列中發掘出更精確多樣的線索,並且其中一些線索仍然來自 S 核糖體 RNA,這要歸功於渥易斯當初的洞察力,以及後來四十多年間他的追隨者的心血。

但是這些數據的涵義為何則見仁見智。現在所有的專家都同意,當年內共生作用發揮了重要作用:不知何故,某個細菌被另一個細胞(宿主)捕獲並且在體內被馴化,然後成為粒線體

它們一旦存在早期真核細胞中並且數量變多後,就會提供大量能量,遠遠超出當時可用的任何能量,讓這些新細胞可以增加體積與複雜性,進而演化成多細胞生物。

粒線體的構造,成為了生物學家探索原生生物起源的重要線索。圖/Elements Evato

複雜性增加的一個顯著特徵,就是控制,特別是對遺傳材料的控制。

從生命的起源之地尋找答案——前往深海

更具體地說,這意味著將每個細胞的大部分 DNA 包裝在一個內部胞器中,也就是由膜包圍住的細胞核。

因此,真核生物起源之謎包含三個主要問題:

一,原始宿主細胞是什麼?

二,粒線體的獲取是否觸發了最關鍵的變化?或者,是由它引起的嗎?

三,細胞核是從何而來的?

更簡化的提問方式則是:一個東西跑到另一個東西裡面,形成複雜之類的東西?這些「東西」到底是什麼?

關於前兩個問題,最近的新證據來自一個意想不到的地點:大西洋底部。它來自於格陵蘭和挪威之間,一個近兩千四百多公尺深的區域所挖掘出的海洋沉積物,這地區附近有一個稱為洛基城堡的深海熱泉。

洛基是北歐神話中既狡猾又會變形的神;挪威主導團隊在發現這個熱泉後取了這個名字,因為這個礦化的噴口看起來就像一座城堡,而且所在位置難以尋找。

為了尋找證據,科學家將目光投向了一般生物無法安然生長的海底熱泉,而科學家也把這個發現洛基古菌的地點命名為「洛基城堡」(Loki’s Castle)。圖 / Youtube

他們與其他科學家一起分析這些海洋沉積物裡面所包含的 DNA,發現這代表了一個全新的古菌譜系,這些細菌的基因體與已知的任何東西都截然不同,似乎代表一個獨特的分類門(門是非常高的分類位階;比方說,所有脊椎動物都同屬於一個門)。

帶領這項基因體研究的生物學家,是任職於瑞典一所大學的年輕荷蘭人,名叫艾特瑪。他結合深處城堡和狡猾神祇的語義,將這個族群命名為洛基古菌

全新的發現!最接近真核生物的古菌:洛基古菌

艾特瑪團隊於二〇一五年公布這項發現。這項發現具有廣泛報導的價值,因為洛基古菌的基因體,似乎與我們人類譜系起源的宿主細胞非常接近。

實驗室培養出來的洛基古菌在顯微鏡底下的樣貌。圖 / biorxiv

《華盛頓郵報》的一則標題說:「新發現的『失落的環節』顯示人類如何從單細胞生物演化而來。」這些從深海軟泥中提取的古菌,真的是二十億年前那些,自身譜系在經過激烈分化後,變成現代真核生物的古菌的表親嗎?這些古菌是我們最親近的微生物親戚嗎?也許真的是。這一點引起大眾的注意。

但是,使艾特瑪的研究在早期演化專家當中引發爭議的,還有另外兩點。

首先,艾特瑪團隊提出證據,表明洛基古菌等細胞在獲得粒線體之前,就已經開始發展出複雜性。也許是重要的蛋白質、內部結構、可以包圍並吞噬細菌的能力。

若是如此,那麼偉大的粒線體捕獲事件,就是生命史上最大轉變的結果,或一連串變化其中之一的事件,而不是原因。某些人,例如馬丁,會強烈反對。

雖然科學家發現了洛基古菌,但也引起了許多爭議和討論,真核生物的演化謎團仍然沒有被完全解答。圖 / Pixabay

其次,艾特瑪團隊將真核生物的起源置於古菌中,而不是古菌旁邊。如果這個論點正確的話,便意味著我們又回到一棵兩個分支的生命樹,而兩大分支不管哪一支,都不是我們長久以來珍而重之、視為己有的。

這也就是說,我們人類就是古菌這種獨立生命形式的後代,這在一九七七年之前是無法想像的。(這種情況會產生錯綜複雜的糾葛,牽扯到在我們的譜系開始之前,細菌的基因水平轉移到我們的古菌祖先中,結果導致細菌也混入我們的基因體內,但本質仍然是:喔,我們就是它們!)

某些人,例如佩斯,會強烈反對。渥易斯也不會同意,只是他在世的時間不夠長,無緣被艾特瑪二〇一五年發表在《自然》期刊上的論文激怒。

六月的一個早晨,在多倫多的一間會議室裡,艾特瑪向一屋子全神貫注的聽眾描述這項研究,其中包括杜立德和幾十名研究人員,還有我。

當我之後與杜立德碰面時,他用一貫的自嘲式幽默說:「我有點被洗腦了。」也是後來,我坐下來與艾特瑪對談。我們談到他當時仍未發表的最新研究,這會把同樣的涵義推得更進一步:粒線體是大轉變的次要因素,人類祖先植根於古菌中,位於兩分支的生命樹上。他很清楚反對的觀點,也清楚自己將會遭遇何等激烈的爭論。

他說:「我真的有在為某些可能迎面撲來的風暴做準備。」

——本文摘自《纏結的演化樹》,2022 年 7 月,貓頭鷹,未經同意請勿轉載。

貓頭鷹出版社_96
47 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

1
1

文字

分享

0
1
1
研究的樂趣來自於「不知道答案」——專訪林淑端
鳥苷三磷酸 (PanSci Promo)_96
・2022/07/18 ・6048字 ・閱讀時間約 12 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 台灣萊雅 L’Oréal Taiwan 委託,泛科學企劃執行。

不論是在分子生物研究所的實驗室裡,還是在中研院區內悠閒的林蔭步道上,我都沒辦法跟上林淑端的腳步,更遑論她話語中的資訊高密度,而我不是唯一跟不上的人。「最早從美國回來的時候,跟學生面試,問問題、看反應。學生竟然說『老師你講話好快、走路好快』,讓他有壓力。」談到自己怎麼挑人進實驗室,風格數十年不變的林淑端說「這樣就挑掉一些了」。

嗯,還好我只是來採訪的。

看不出來還有三年便七十歲的林淑端,身著輕便無印風的苔蘚綠寬鬆 T 恤與岩石灰長褲,圍著一條藏青色的短圍巾,像位遁居山林的高人,卻也像個躍躍欲試的孩子。

身為科學家,她表示做研究不外乎是因為現象「很有趣」,以及想了解此現象的「重要性」。1982 年,她毅然結束四年的中學教職,前往美國德州大學念博士班。起初她待的研究室重點是癌基因,當時學術界認為任何化學物質都會引發突變、產生癌化,但其實不然。因此觀察細胞一年之後,找不到重要性的她決定換一個研究室。

林淑端的新老師 Hans Bremer 研究細菌生長。細菌很小,眼睛看不到、種類繁多,「有許多有趣的想像空間」,又有重要的抗藥性議題,就這麼吸引了她。Bremer 博士當時研究的是 rRNA(核糖體 RNA)的轉錄調控,這機制跟細胞的生長快慢有關係;順著這個理路,她想那不妨來看質體(Plasmid)上的轉錄,質體是細胞染色體或核區外,能夠自我複製的 DNA 分子,而有些細菌的質體帶有抗藥基因,便產生了抗藥性。

「質體 DNA 的複製源頭其實是由兩個 RNA 在調控,但我想了解是正調控還是負調控。」簡單來說,正調控(positive control)是指能促發生物活性啟動,而負調控(negative control)則是抑制活性,使基因不表達。

當時林淑端讀了富澤純一(Junichi Tomizawa)這位日本科學家的研究,覺得驚為天人。「怎麼能把 RNA 的序列、突變的結合、次級構造,複製如何開始等等細節研究得那麼好!」見賢思齊且一向認真的她,當然也要把研究做到同等級。為了偵測細胞中的相關 RNA 濃度,林淑端不斷嘗試,她說自己運氣好,當時實驗室有好幾位來自德國的研究者,「他們的自製機械技工很好,但通常是做 DNA 電泳槽,但我想研究 RNA,他們就手工幫我做。」

使用毛細管轉移(Capillary Transfer)到膜上,透過探針偵測,她一步步逼近目標,「後來發現都對啊!」透過實驗,她證明 RNA 降解的快慢的確跟質體 DNA 的複製有關,作為博士班階段第一篇研究,也是她成為國際級 RNA 研究者的基礎。

現在歸納來看,林淑端認為好的研究要同時具備獨特切入點(例如極小的 RNA)與重要性(質體 DNA 複製的機制),這也是後續她做所有研究的必備條件。

然而若回到當時,身為 RNA 降解這一研究方向的拓荒者,她坦言「其實很 suffer」。

「大家做的都是 RNA 的剪接,問要切哪個位點結構才會對;好像做衣服,剪完不要的布就丟掉了,人家覺得降解是沒有用的。」林淑端坦言自己回到台灣之後,足足悶了五年,每一年進度報告審查,都被委員質疑「RNA 降解有什麼用?不是就沒了嗎?」但就像每一位貨真價實的科學家,她表示「我好奇、我有熱情、我感興趣,我就是要問到底。」

自從第一篇研究發現 RNA 降解的生物功能,林淑端已經有很清楚的概念:從穩定度可以知道半衰期,也就是濃度降低到一半所消耗的時間;半衰期跟 DNA 複製有關,從 DNA 可以看出強度、複製量。其中必須有特定的 RNA 酶,它的突變變得對溫度敏感並決定細胞存活,而這又帶出很多問題,例如為什麼細胞需要這個酶、為什麼失去活性細胞會死掉?她說,很多問題到現在還沒有很清楚的答案。她從多方著手解謎,從讀博士班到現在即將退休,從未停歇。

她說,科學家就是很執著的一群人,不然做研究這件事「95% 的時候是失敗的」,很難撐下去。然而重點不是 5% 做對了什麼,而是那 95%,「因為沒有那 95%,就沒有那 5%。」她形容到後來 5% 的時候,會感到「That’s it !」而在那個當下,整個團隊都進入了另一個狀態。這個最後一步的感覺,要靠累積磨練出來。

然而一道門開了,後頭有無限道門。為了研究室裡年輕研究者的職涯,將退休的林淑端已鎖定最後一道門,要在三年內找到鑰匙,「我要去證明這個領域裡一直沒有答案的問題。」她說,現階段想加入她實驗室的新人,需要全心全神認同她要問的問題,有共識且極為專注。

如今,因為冠狀病毒是 RNA 病毒,新冠疫苗也利用 mRNA 技術開發,全世界的人都知道 RNA 了,但知道歸知道,研究 RNA 獲得的新知還可以用在哪裡呢?

林淑端感嘆,回台灣前五年她之所以苦悶,就因當時學界普遍認為 RNA 降解根本不值得關注,何必研究?然而回頭看,不論是在大腸桿菌表現或藉由昆蟲細胞來量產蛋白,所有要在體外表現蛋白的醫藥,都要製造一個模板,讓 mRNA 表現蛋白,而要做到這件事需要先了解脆弱的 RNA 在細胞的穩定度如何維持,這時她自基礎研究發展的知識立刻派上了用場。

「我現在常常在想,RNA 疫苗如果要不那麼快降解,可以透過修改核苷酸,因為核糖核酸酶(RNase)是用正常的 RNA,又例如利用富含腺苷酸跟尿苷的元件(AU-rich elements, AREs,這是哺乳類動物細胞中 RNA 穩定性的最常見決定因素),控制 ARE 穩定性的分子機制,細胞表現的 RNA 就可不會降解……這個應用性很高,是吧!」對她來說,基礎研究科學的應用性不必強求,因為主要是增加新知識。當基本功扎實,想得到或者需要應用的人跟場景自然會刺激研究人員去想怎麼解決、如何應用。

打開學術生涯最後一道門

如前面提到,林淑端在退休前要解開一個問題:大腸桿菌在腸道最後段的缺氧環境會切換成厭氧消化,然而厭氧菌分解同樣多葡萄糖獲得的能量,比起有氧狀態下少了十倍以上,那麼 RNA 降解的機制是否也跟實驗室有氧狀態下的降解很不一樣?而這對人體的腸道微菌叢生態以及腸道代謝會有什麼影響?

分解葡萄糖產生能量,簡稱糖解(glycolysis),在生物分子層次可劃分出十個步驟、牽涉到十個蛋白酶,烯醇化酶(Enolase)是其中之一。林淑端團隊在 2017 年發表的論文中發現烯醇化酶在 RNA 降解中也有作用,並確認了它的功能,「證明烯醇化酶對無氧環境下細菌細胞分裂很重要,而且必須要在核糖核酸酶 E 上面,沒有烯醇化酶跟核糖核酸酶,大腸桿菌就活不了。」

在此基礎上,林淑端與研究團隊提出假說:糖解過程跟 RNA 降解兩者之間有某種交流,可能是蛋白與蛋白直接接觸,或是藉由「第二訊息」,比如被稱為能量貨幣的三磷酸腺苷(ATP)。例如,兩個過程可能對 ATP 互相需求而產生合作,因為葡萄糖最終產生 ATP,而 RNA 最終降解成為一個一個核苷酸,其中的二磷酸腺苷(ADP),就是 ATP 的前驅物。「RNA 沒有用,一定要降解,否則它的核苷酸沒辦法回收再利用。在細胞裡面沒有任何廢物,百分之百再利用,他們中間就是有默契,這就是我要證明的。」林淑端說,她們已經找到了完整的拼圖,只是還不知道怎樣拼起來,但方向看起來可行。

作為她研究生涯最後的計畫,在之前申請計畫階段,中研院邀請了外部審查委員審查,委員意見都給予很高的肯定,但也強調失敗的風險很大。「但風險越大,回饋也越大,所以他們其實很期待,風險是我在擔心。」林淑端笑著說。

師道無他,以身作則而已

大學畢業後,林淑端曾當過四年初中老師。這段不長不短的歷程,對她後來出國改走學術路線,有莫大的影響。

「我本來就住梧棲,到處都是養鴨的。從鄉下怎麼走到今天,想來也不可思議,非常感恩。」林淑端表示由於父親做生意,使得「家裡很多狀況」,但即使如此,林淑端的母親曾對她說,她這輩子最難過的是自己不識字,因此只要林淑端能念,就不要擔心。跟她只差一歲的姊姊,只唸到小學畢業,便選擇扛起家計,讓林淑端能專心唸書。

「還好我們需要很少,獎學金也夠,我教書四年一毛錢沒拿,薪水紙袋全都交給家裡,在家裡就是睡覺吃飯。」一直到要出國,林淑端才驚覺需要錢。當時她幫一位大學老師做研究,這位老師得知之後,二話不說將郵局存款給她,作為她可以在國外生活的證明。

「總之我沒有富裕過,也沒有缺乏過,也不覺得錢很重要,反正夠用,就這樣走過來了。薪水少或多,從來也沒有在意過,但興趣一直驅動著我,也一直很感恩。

雖然自己一路都是好學生,但林淑端不是典型的老師。當時補習風氣已盛,填鴨式教學成為時代產物,林淑端這位年輕教師反而帶學生跑操場、露營,這讓家長覺得很另類,也有點擔憂。

「我在大安教一年,童軍競賽就得獎,梧棲的校長就拿聘書到我家要聘我回家鄉,後來到梧棲任教才知道,所有老師教職員的孩子都在我的班級。」但是她發現,學生考試補習早班晚班排得滿滿的,壓力大、又被動。身為新來的導師,跟學生只差 10 歲的她就像大姊姊,把學生帶到操場上課、帶去露營,家長質疑「這個老師在搞什麼?」

不過這就是林淑端教學的秘訣。在當時的梧棲鄉下,她用非典型方式帶的班級升學屢破最佳紀錄,她說「我沒有什麼模板,但我知道我要把學生的興趣提起來,刺激他們做到最好。」自己求學過程中遇到很多好老師,當老師後深覺當時教育現況有很多問題,自己一個人無法辦到,然而如果想要影響教育體系,林淑端知道自己得爬得更高,加上她本身就熱愛研究,便決定結束教職與先生一同赴美深造。出國時,學生跟家長包了兩部遊覽車來歡送。「那時候不覺得怎樣,現在想起來才覺得自己就是做什麼就進入狀況。每個人只要找到他的熱情,投入做,就能做得好。

回台灣之後,林淑端建立自己的研究團隊,成員大多是讀過她論文、慕名遠來的外國人。外國人來台灣做研究,從簽證邀請函到落地租房,很多問題都要解決,來了也不像台灣學生,可以不合就走,林淑端對待外國研究者就像對家人一樣,唯有如此才能讓他們在自己的實驗室穩定發展,「雖然收的人不多,但都待很久」,她謙虛地說只有更好的學生,沒有更好的老師,老師可以啟發,但做出成果的是年輕人。她要為社會培育出能找問題跟解問題的博士級人才,這能產生最大影響,也能代代相傳。

她的團隊如家人般互相照料,但工作極具挑戰。每週一對一討論與每月大 Meeting 上,學術問答針鋒相對,有如不見血的拼搏,透過這樣的過程,林淑端認為重點是讓團隊中每個人都感到有幫助,才能落實科學求真的價值。曾經有印度學生一時無法接受而選擇回國,但反思之後,寫信對林淑端說:「我永遠是你的學生,因為我學到太多了。」

學術也是技術,技術就得從觀察中學,包括觀察團隊領導人對事情的投入、熱情、嚴謹、對問題的批判性,對成員的要求。「他每天都看到你,你每天都這樣,他就會學。」林淑端強調,做研究不要害怕,不知道就說不知道,不要假裝好像知道又好像不知道,「其實只有真的不知道,你的理論跟假說才不會亂講。一直那麼多年,我覺得真的就這樣而已。」

再來就是享受過程,「結果不是關鍵,過程才是關鍵」。她說這其實不是苦中作樂,因為思考過程,想到底缺了什麼,就是樂趣本身。

最後,驗證出來的結果要有趣地、有故事性地、有邏輯地說出來。發表是為了激發讀者思考。這些讀者可能是新一代的研究者或是同儕,把文章寫好才能刺激領域發展。

女性需要的是機會

身為 2020 年第十三屆台灣傑出女科學家獎傑出獎得主,林淑端表示 1987-1990 年在史丹佛做博士後時,就發現當上教授的女性很少,而且性別不同還影響薪資。回到台灣後,雖然跟美國比起來,學術工作薪資不高,但不分性別大家都平等,特別在中研院分子生物研究所,女性比例超過 50%,「我們蠻強勢的,而且男性同事都很紳士。」她說。

不過,在中研院處長,院長、副院長等主管中,女性就很稀有了。林淑端在 2007 年負責創建中研院國際處,並擔任國際處長一直到 2016 年,「我很幸運地跟翁啟惠院長同事,他很信任我,知道我對教育很感興趣。」林淑端知道要提高中研院的能量,需要學生加入研究,因此她創建並擔任處長的目標就是要將國際學生制度化,提出跟大學不同的獨特教育價值,也推動中研院能全英文運作。那段時間常跑教育部開會的她,也注意到當時教育部的科長、專員、司長大多是男性,「自然規律,性染色體是 ½,如果女性的資源也 ½ 的話,那社會就會不一樣。」

「我做行政的幾年的確有看到男女差異,但我在教育裡沒有歧視,不會偏好女孩。」林淑端認為提供機會最重要,而若有一些因素系統性地讓女性無法獲得機會,就該改變。例如研究單位必須提供日間幼兒照顧。她也指出,遇到 COVID-19 這樣的情況,若小孩生病,待在家照顧孩子的大多都是媽媽,這或許是女性的天性,但仍須思考這造成的影響。

少子化對學術界的衝擊很大,因此只要有研究熱情的年輕人進入林淑端的團隊,她都希望按照個性予以激發,讓他們成功。當她 2020 年起開始參與吳健雄基金會與台灣萊雅為女高中生舉辦的高中女校科學巡迴活動,就覺得特別振奮與開心。

「到高中去,讓我覺得很有成效,因為許多高中女生在一個非常單純的學校,很多在鄉下,對未來的願景不是很清楚,當我們去的時候可以告訴他這一路的風景,讓她們知道做的事是有用的。」例如林淑端在分享時會將國家生技研究園區的轉譯計畫、基因編輯嬰兒等跟 RNA 相關的新事件融入,讓台下的女高中生知道:「事情不是停在這,在你們的時代不知道會碰到什麼新知,但是你們做出來才會有新知。」只要聽眾中有一個人繼續走,她覺得就很值得。

她想起自己剛回台灣,學界同儕從她身上,往往只看到她老師史丹佛大學醫學院教授 Stanley N. Cohen 的影子,看不到她對研究的貢獻,曾有一段時間很不服氣、孤單、挫折,「但都要走過來,所以我現在才能幫年輕人。」

作育英才」短短四字,林淑端用一輩子來實踐,儘管即將退休,她的腳步與思緒仍舊飛快,吸引更多後進追逐;而當她被超越,也是她最欣喜的時刻。

台灣傑出女科學家獎設立於 2008 年,是台灣第一個專為表彰傑出女科學家、並鼓勵女性參與科學而成立的獎項,由台灣萊雅及吳健雄學術基金會共同主辦。

「創新 RNA 研究、貢獻醫藥基礎科研,並深具教育家精神的林淑端博士 – 第十三屆台灣傑出女科學家獎得主」。影片/台灣萊雅

本文由 台灣萊雅 L’Oréal Taiwan 委託,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia