0

0
0

文字

分享

0
0
0

Eris星系創世紀,第一章…

臺北天文館_96
・2011/09/11 ・2180字 ・閱讀時間約 4 分鐘 ・SR值 573 ・九年級

依照星系形成和星系演化的物理,在功能強大的超級電腦上,經過九個月的運算後,一個和我們的銀河系幾乎一樣,但只存在於模擬世界中的美麗螺旋星系:Eris – 終於誕生(這個名字與矮行星之一的鬩神星的英文名一樣,意思是「愛吵架」)。整個研究計畫需要的時間,按「處理器工作小時」計算,等於140萬小時,也就是兩輩子那麼久,根據這批跨國天文學者團隊的研究所得,這項最新成果可望解決一部分長期以來眾所矚目的「宇宙結構模型到底應該如何」的問題和挑戰。

右圖圖片說明:上下兩相對照比較Eris這個由模擬得來的星系(上圖)和銀河系實際觀測結果(下圖)。圖片來源:S. Callegari, J. Guedes和 2MASS(全名:Two Micron All-Sky Survey – 「2微米全天巡天計劃」).和銀河系一樣,Eris是個可愛的棒旋星系,也就是有明亮的恆星在核心中央部位湧出、聚集成一根「短棒」的螺旋星系,在模擬模型中,無論形狀上的特性,亮度分佈,核球和銀盤之間呈現的比例、所含恆星內容,研究人員都盡量詳細的模擬,好教它和真實銀河系呈現出一模一樣,為了確認它和實際觀測所得一致,研究團隊且再三將銀河系用各種不同的方式拆解分析;而藉由這樣的研究我們自己的銀河系,還有其他與銀河系相類似的星系,最後,模擬出的成果和真實的銀河系之間相當維妙維肖,無論從哪個角度看,結果都是符合。

一共有號稱「七姐妹」的七臺超級電腦參與了Eris計畫,其中光是NASA最先進的超級電腦Pleiades(昴宿星團)就投入了140萬個「處理器小時」。不止NASA,在加州Santa Cruz大學和瑞士國家超級電腦中心也提供超級電腦共襄盛舉。為了模擬出超高分辨率的單一星系,耗費了非常多寶貴的超級電腦的時間才能完成,其實,風險不小。

過去20多年來,創造出一個「類銀河系星系如何演化」的模型,一直是研究員力有未逮的挑戰,Eris並非首度創舉。先前人們早就想過對一個銀河系這樣大質量盤狀星系加以計算,以模擬方式取得結果,類似努力最後宣告失敗,因為結果呈現出一刻太巨大且與銀盤不成比例的中央核球。

Eris計畫的成功,和它能合乎實際狀況的模擬出恆星如何形成很有關聯,在本次計劃取得新突破後,肯定了描述宇宙結構演變乃是由暗物質和重力互相作用驅動的「冷暗物質」理論,可望繼續佔有它原來的主導地位。何謂「冷」「暗」物質?「冷」,因為它的粒子運動速度緩慢,「暗」,則因為它是看不見的。初始時,重力對宇宙大霹靂後微小的波動起作用,開始將一些小塊的暗物質聚集成團,後來藉由一層層階層合併,暗物質團塊也越長越大。構成恆星和行星的這些普通物質,其實佔宇宙物質總量還不到20%,而當普通物質落入大塊暗物質所形成的「重力井」中的時候,就在暗物質暈的核心裡長出了星系。

根據該研究論文主要作者Madau表示,「在真正的星系裡,其實恆星形成是以群體的方式發生,要將這個部份以宇宙結構模擬方式加以呈現,相當的困難。Eris計畫是所有模擬中,第一個能夠解析出恆星形成時特有的高密度氣雲,而且模擬結果正是一個「類銀河系」星系應有的「小核球+大銀盤」。除此之外,它的模擬中還能表現出冷暗物質的存在,暗物質,為星系的形成提供了框架,因此能夠產生很實際逼真的一個以盤型為主的星系。」

誕生一個像Eris這樣的計畫並非易事。研究人員首先由低分辨率的暗物質開始著手,模擬它演化成暗物質暈,在模型中,這些暈所扮演的角色是,它們後來將成為孕育出今日星系的搖籃,接下來又選定一塊質量剛好,且合併歷史也和銀河系差不多的暗物質暈,再次將它「倒帶」到初始階段,在本次研究中,就是藉由專注集中在他們所選定的那一小塊區域,增大其氣體粒子數量,以提高它的模擬解析度,高解析度,意味著對大量的粒子互動能更詳細的加以追蹤。

至於模擬結果,則是讓6千萬顆分別代表了暗物質和氣體的粒子去自行相互作用所得。像這樣的一套程式碼,需要參考包括重力、流體力學、恆星形成和超新星爆炸等多領域的物理學,以套入了宇宙結構的模擬而言,Eris計畫取得了現階段分辨率最高的一次結果。

Eris和它的諸多前輩們不同之處當然在於它能「看到」高分辨率/高密度氣體雲。更高解析度為恆星如何形成帶來一份更精確的標準「配方」。在低分辨率模擬中,氣體密度會在較大的區域中被平均、稀釋掉,但是恆星形成的密度閾值又必需設為極低,結果造成模擬中,形成恆星的氣體往往瀰漫整個星系。在Eris模擬系統的設計中,它在設定恆星形成閾值時,能允許恆星單單只在高密度氣體地區發生,於是也帶來更逼真的恆星分佈情境,這是個很重要的考慮因素,因為超新星爆炸只發生在高密度氣體雲地區;並且超新星的氣體噴流必須是從星系的裡層產生的,若否,則它將會形成更多恆星、製造出更大、更凸起的核球;要將這些因素都納入考慮中,唯有能提供高分辨率的模型才能做到。研究人員表示,「在我們的這個模擬中,呈現出恆星以星群的方式形成以及來自超新星的能量噴發,這兩個因素正是它和其他模型之間最大的差別。」

看來活靈活現的Eris — 好像真的有光?!(Lauren 譯)

Eris模擬結果圖:藍色區域是最近形成的恆星,顏色越偏紅,和年老恆星的關聯度越高。旋臂是典型的恆星形成區,中央隆起的核球,基本上代表著「紅過頭,已死亡」的恆星。在Eris裡所顯示出的星系中的恆星,和我們觀測所見:一模一樣。圖片來源:J. Guedes 和 P. Madau

資料來源:中研院天文網

轉載自台北天文館之網路天文網網站

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
1 篇文章 ・ 3 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策