Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

磁振子學:奈米級自旋波能取代微波

only-perception
・2011/09/11 ・752字 ・閱讀時間約 1 分鐘 ・SR值 584 ・九年級

-----廣告,請繼續往下閱讀-----

 一群來自瑞典 Gothenburg 大學與 Royal Institute of Technology(KTH)的科學家已成為世上第一個證明關於奈米級自旋波(spin waves)的理論與觀察相符的小組。這開闢新的道路,能以更小、更便宜以及所需資源更少的元件,取代許多應用裡的微波技術,例如行動電話與無線網路。這項研究已發表在科學期刊 Nature Nanotechnology 中,奈米科學中最著名的期刊。

“我們與其他二個研究小組角逐成為第一個在實驗上證實理論性預測的小組,這些預測在近十年前首度出現。我們之所以成功,是因為我們建構磁性奈米接點(magnetic nanocontacts)的方法以及在我們夥伴實驗室那邊的特殊顯微鏡(位於義大利的 Perugia 大學),” Gothenburg 大學物理系的 Professor Johan Akerman 表示,在此他領導應用自旋電子學小組。

此研究計畫(那始於二年前)的目標,是要證明來自磁性奈米接點的自旋波傳播。去年秋天,該小組在電性測量的協助下已能證明自旋波的存在,而成果已發表在科學期刊 Physical Review Letters 上。而新成果則發表在 Nature Nanotechnology ,奈米科學中最知名的期刊。

研究小組利用世上三套先進自旋波顯微鏡的其中一套(位於義大利 Perugia 鎮的大學),將運動視覺化。這套顯微鏡使他們能以大約 250 奈米的解析度看見元件的動態特性。

-----廣告,請繼續往下閱讀-----

這些結果為新的研究領域,稱為「磁振子學(magnonics)」,開闢道路。

“我認為我們的研究結果將發出磁振子元件(magnonic components)與電路開始迅速發展的訊號。令人格外振奮的是,這些元件是由簡單的直流電供電,那接著在微波領域中被轉換成自旋波。這些波的頻率能直接以電流控制。這將使得全新功能成為可能,” Johan Akerman 表示,他正前瞻接下來幾年令人振奮的發展。

它的磁光(magneto-optical)與金屬特性意味著磁振子科技能與傳統基於微波的電子電路整合,而這將使得完全不曾嘗試過的技術結合成為可能。磁振子元件傳統微波技術更適合微型化。

資料來源:PHYSORG: Nanoscale spin waves can replace microwaves [September 7, 2011]

-----廣告,請繼續往下閱讀-----

轉載自 only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
凍傷了?來微波加熱一下~
胡中行_96
・2023/02/20 ・1975字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

俄羅斯西伯利亞的科學家,於 2023 年 1 月的《科學報告》(Scientific Reports)期刊上,發表了一些看似能防止烤雞的外皮過焦,同時確保內部肉質鮮美多汁的技巧。比方說,一般作法「由外部加溫很危險,不是每次都能得到正向的結果…」。若改用微波,則「所需的溫度相對不高」,但要力求整體均衡,「不能只有外層受熱」。遺憾他們說了半天,卻跟食物無關,其實是在介紹如何安全又有效地,用特製的微波裝置,治療凍傷患者的四肢。[1]

當然不是把凍傷患者,丟進家用微波爐裡。圖/osseous on Flickr(CC BY 2.0)

微波的對象與裝置

就像料理烤雞,得先弄來雞隻和烘烤的設備;進行這項研究前,需要滿足兩個條件:

  1. 招募凍傷的人:在氣候冷冽的西伯利亞,要造成凍傷,難度並不高。不過,根據《赫爾辛基宣言》(Declaration of Helsinki),人體試驗應該符合倫理,將志願者可能受到的傷害降至最低。[2]不能隨便把人往雪地扔的研究團隊,在當地 Tomsk 市的 2 家醫院守株待兔,期望意外凍傷的人自己找上門。2018 至 2021 年間,每年的冬季他們都耐心等候,總共蒐集到 14 名超過 20 歲的男性,簽署受試同意書。[1]
  2. 製作微波裝置:研究團隊精心打造的裝置(下圖),簡單來說,就是一台方便手腳伸進去加熱的微波爐。前面的圓形入口,包覆著具隔絕效果的金屬材質,以保護傷患與研究人員,免於非必要的輻射暴露。此裝置的微波頻率為 2.45 吉赫(GHz);而功率可達 200 瓦特(watts;簡寫 W),即每秒產生200 焦耳(joule;縮寫 J)的熱能。[1]換句話說,頻率與家用微波爐無異,功率卻低了數倍。[3]

由於研究團隊只想幫傷患加溫,沒有要煮熟他們的意圖,便設定開到 60 瓦特。再加上操作時,會喪失些許熱能,最後傷患實際接收到的,大約僅有 30 至 40 瓦特每個患部加熱 1 至 3 次,每次 30 分鐘。雖然感覺微溫,但不至於難受。9 名傷患接受上述治療;另外 4 個嘗試了不同的功率;還有 1 人則是時間長度減半。[1]

可以把手腳伸進去加熱的微波爐。圖/參考資料 1,Figure 2(CC BY 4.0)

加溫的原理

平均而言,當人體組織的溫度低於攝氏 15 度左右,血液和淋巴循環會停止。身體各部位略有差異,手指的下限是 19 度;而腳趾為 15 度。為凍傷患者回溫時,目標溫度大約是 20 到 25 度上下,要觸及整個患部,而非僅有表層。讓身體恢復運作,才能透過循環,順利輸送藥物。以往從外部加溫的作法,會舒張表層血管,卻容易在深層血管收縮的情況下,導致壞死和截肢等問題。相對地,低功率的微波可以穿透到組織深層,逐漸舒張血管,促進血液與淋巴的循環,不會有上述副作用。[1]

-----廣告,請繼續往下閱讀-----
天寒地凍的西伯利亞 Tomsk 市。圖/Артём Полоз on Wikimedia Commons(CC BY-SA 4.0)

凍傷的等級

凍傷依照程度,可以分為 4 個等級:[4]

  1. 第一級:麻木、脫屑、感覺異常、中央蒼白,以及周圍水腫或紅腫。[4]
  2. 第二級:起水泡,周圍紅腫或水腫。[4]
  3. 第三級:失去整層皮膚組織,還長了出血性水泡。[4]
  4. 第四級:不僅皮膚,連深層組織都喪失了。[4]

微波的療效

此研究受試者的凍傷程度涵蓋上述四級,治療時除了微波,也採用標準療程的消毒與藥物,並視情況選擇是否手術。整體來說,科學家對微波相當滿意,覺得能降低截肢的機率。此外,雖然第一、二級的傷勢輕微,效果比較不明顯;但是他們認為無論初步評估的凍傷程度,每個傷患最好都要接受微波。因為診斷難免失準,若因此錯過治療時機,實在得不償失。[1]

既然如此,未來遇到凍傷患者,是不是都該抓來微波一下?儘管研究證明了科學家的假設似乎可行,目前的受試者就區區幾名男性,不足以建立一套完善的操作指南。臨床上不同體型、年紀或性別的傷患,或許適合不同功率或時間長度的微波治療。這些都有待將來進一步試驗,才能推廣運用。[1]

  

-----廣告,請繼續往下閱讀-----
  1. Dunaevskiy G, Gavrilin E, Pomytkin A, et al. (2023) ‘Reduction of amputations of frostbitten limbs by treatment using microwave rewarming’. Scientific Reports, 13, 1362.
  2. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’. (06 SEP 2022) World Medical Association.
  3. Radiation: Microwave ovens’. (01 JUN 2005) World Health Organization.
  4. Basit H, Wallen TJ, Dudley C. (27 JUN 2022) ‘Frostbite’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

12
5

文字

分享

0
12
5
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

-----廣告,請繼續往下閱讀-----

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

-----廣告,請繼續往下閱讀-----

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

-----廣告,請繼續往下閱讀-----

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

-----廣告,請繼續往下閱讀-----

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

-----廣告,請繼續往下閱讀-----

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

-----廣告,請繼續往下閱讀-----

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

-----廣告,請繼續往下閱讀-----
  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1577 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事