0

0
0

文字

分享

0
0
0

麥子、稗子與毒麥

葉綠舒
・2014/12/10 ・1737字 ・閱讀時間約 3 分鐘 ・SR值 533 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

在Facebook上看到多年前畢業的學生的文章,覺得很有趣,徵得他的同意改寫在此。

什麼事那麼有趣呢?原來,昨晚他們團契聚會的主題是讓稗子和麥子「一齊長」。此梗典故原出新約聖經「天國好像人撒好種在田裡, 及至人睡覺的時候,有仇敵來,將稗子撒在麥子裡就走了。 到長苗吐穗的時候,稗子也顯出來。 田主的僕人來告訴他說:主啊,你不是撒好種在田裡嗎?從哪裡來的稗子呢? 主人說:這是仇敵做的。僕人說:你要我們去薅出來嗎? 主人說:不必,恐怕薅稗子,連麥子也拔出來。 容這兩樣一齊長,等著收割。當收割的時候,我要對收割的人說,先將稗子薅出來,捆成捆,留著燒;惟有麥子要收在倉裡。」

當時團契的牧師提到,「要讓稗子跟麥子一起長,並不是希望稗子的基因轉成麥子…」時,引起了他的注意,於是回到住處便做了一些功課。結果還蠻有趣的…

稗子這種東西很耗地力營養,因此在世界各處都不受歡迎。但是,在中國長江流域一帶,有人在天候不佳不利糧食植物種植時,拿稗子做為牲畜的糧草,甚至還有釀稗子酒的,據說因為稗子這種植物熱量不輸高粱。

但是根據聖經,稗子是非常糟糕的東西,怎麼中國還有人拿來餵牲畜,甚至還能釀酒?

原來聖經中的「稗子」,其實不是華人世界中的稗(Echinochloa crus-galli)。當初會翻譯成稗子,應該是因為當時翻譯的人不知道tare/weed是什麼(而 weed 是用來押韻 seed 這個字。筆者按:weed其實指得是雙子葉的雜草,單子葉的雜草一般稱為grass),因此才採用了最接近的物種。

Echinochloa_crus-galli01
稗。圖片來源:wiki

看上面的照片就知道,其實稗子跟麥子(應是小麥,見下圖)長得並不相像。

Wheat_close-up
小麥。圖片來源:wiki

即使與最早馴化的einkorn(一粒麥,Triticum monococcum)或emmer(二粒麥,Triticum dicoccum)相比,也並不相像。

EINKORN Triticum_monococcum0
一粒麥。圖片來源:wiki
Usdaemmer1
二粒麥。圖片來源:wiki

那麼,真正出現在聖經裡面的植物,到底是什麼呢?原來,它是一種俗稱為 darnel (也稱為poison darnel 或cockle)的植物,中文譯作毒麥(Lolium temulentum)。

320px-Illustration_Lolium_temulentum0
毒麥。圖片來源:wiki

跟上面的小麥相比,的確在外型上有些相似。由於它的分布區域,和小麥完全重疊,因此會和小麥競爭空間、水分、養分。而 darnel 會與一種真菌(Neotyphodium 屬)共生,這種真菌會產生一種有毒的生物鹼,幫助darnel 減少自己被吃草的生物吃光的機會。但是這種生物鹼對人也有毒,食用後會產生暈眩、噁心,嚴重者可致死。

因此, darnel 成為人人除之而後快的植物,因為人們早就知道這種植物有潛在的危險。但也就是因為它們很像(也因此 darnel 在某些地方被稱為 false wheat ),所以在聖經中,被借用來做了比喻。其實仔細看,從形態外觀上,還是可以區分 darnel 和 wheat 的不同。

這個聖經的比喻,讓筆者想到,其實台灣民間也不乏這樣的應用。例如台語的「人若衰,種瓠瓜生絲瓜。」,就是很生動的比喻。這個比喻的由來是因為,瓠瓜(葫蘆瓢,bottle gourd, Lagenaria siceraria)在幾十年前的台灣,是比較值錢的農作物;相對來說絲瓜(一名菜瓜,Egyptian cucumber,Luffa aegyptiaca)則比較不值錢。但是種瓠瓜時,有時會有些瓠瓜長不出葫蘆的形狀,長成一條長長的有些像絲瓜的外型(如下圖)。

Luffa_aegyptica
絲瓜。圖片來源:wiki
Courge_encore_verte
瓠瓜。圖片來源:wiki

雖然一樣是混在麥田裡的雜草,但是黑麥、燕麥後來成了受歡迎的穀物,而毒麥只能存在於聖經中,還因為翻譯的關係,根本不存在於華人教友社群裡…命啊…!雖然仔細看還是看得出來瓠瓜與絲瓜的不同(對筆者來說是一望而知),但是就會被一些想要挑便宜貨的人故意硬拗說,「這明明就是絲瓜不是瓠瓜」來殺價。所以才會有這樣一句俗語流傳下來。

原刊載於作者部落格 老葉的植物王國

文章難易度

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1