可是對時常伴隨著我們的情緒,如憤怒、罪惡感、焦慮、悲傷、同理、喜悅、愛戀,我們究竟知道多少?我們能夠透過腦科學的研究來剖析這些情緒嗎?《其實大腦不懂你的心》(How We Feel: Understanding What Neuroscience Can and Cannot Tell Us about Our Emotions)除了介紹心理學與神經科學在情緒研究上的進展,更透過哲學、藝術、詩歌、音樂及劇場等科學以外的角度,帶我們重新認識那些讓人又愛又恨的微妙情緒。
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手、Readmoo部落格【GENE思書軒】、關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
當需要更高解析度時,便是電子顯微鏡登場的時候。掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)能清楚呈現微塑膠表面的粗糙度、裂紋與附著物;若結合能量散射 X 光譜(EDS),還能分析表面元素,確認是否為碳基塑膠。穿透式電子顯微鏡(TEM)則是研究奈米塑膠的關鍵,能觀察到顆粒內部結構與與細胞交互作用的情形。
除此之外,原子力顯微鏡(Atomic Force Microscopy, AFM)也是研究塑膠微粒的重要工具。它以極細的探針在樣本表面掃描,達到原子級的立體圖像,不僅能觀察顆粒粗糙度,還能分析硬度和附著力,對研究塑膠老化或表面污染吸附特別有用。
Nihart, A.J., Garcia, M.A., El Hayek, E. et al. Bioaccumulation of microplastics in decedent human brains. (2025). Nature Medicine,31, 1114–1119https://doi.org/10.1038/s41591-024-03453-1
Kalaronis, D., Ainali, N. M., Evgenidou, E., Kyzas, G. Z., Yang, X., Bikiaris, D. N., & Lambropoulou, D. A. (2022). Microscopic Techniques as Means for the Determination of Microplastics and Nanoplastics in the Aquatic Environment: A Concise Review. Green Analytical Chemistry, 3, 1–54.