Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

TED 到底該不該讓你/妳看那兩個演講?

洪靖 Ching Hung
・2014/07/15 ・4190字 ・閱讀時間約 8 分鐘 ・SR值 585 ・九年級
相關標籤:

最近在網路上,有一個關於 TED 的科學爭議。知名部落客王大師前些日子寫了一篇〈TED死都不想讓你看的兩個演講!〉(後簡稱王文),批評 TED 刪去兩場演講──謝爾瑞克(Rupert Sheldrake)「科學的迷妄」與漢克(Graham Hancock)「意識之戰」──的作為, 無異於「論述守門人」(gatekeeper of narratives),看似中立地提供有意義、有價值的觀點一個發表管道,但實際上卻一再過濾那些不符合主流科學研究的論點,因此公信力需要打個折扣。 此文受到大量轉貼,引起泛科學(PanSci)常駐寫手 Gene Ng 的注意,並且為文〈TED 死都不該讓你看的兩個演講?〉(後簡稱 Gene 文)回應,指稱 TED 的精神標語本來就是「Ideas Worth Spreading」,而被刪除的那兩場演講本身不論是科學哲學上或研究證據上都不夠科學,只能歸屬科幻小說,所以理當沒有傳播的價值。

Photo Credit: ~C4Chaos~C4無秩序 (CC BY-NC-SA 2.0)
Photo Credit: ~C4Chaos~C4無秩序 (CC BY-NC-SA 2.0)

根據王大師的一些「自述」與文章內容,大概可以知道王大師的背景立基人文社會領域;而 Gene Ng 在泛科學的個人資料則明白寫著一路接受生物學訓練,換句話說有著堅實的科學領域背景。對於從理工轉換到人社的我來說,這樣的爭議自然容易引起我的高度興趣。更有趣的是,Gene Ng 在文章中大量引述科學哲學作品,尤其是孔恩(Thomas Kuhn)的典範理論,來說明不符合常態科學的理論自當不具價值。回想當初,正是因為受到孔恩〈科學革命的結構〉一書的影響,進一步接觸其他科學哲學作 品,也才逐漸堅定轉換跑道的志向,加上目前研究又待在以科學技術為研究對象的科技與社會(science and technology studies)領域,因此對於眼前兩造爭議、對於怎樣算是科學,不禁想說點什麼。

首先,Gene 文對於孔恩(以及其他科學哲學家)的引述相當正確,大體能夠忠實傳達孔恩觀點的內容,不過不得不說,有些地方有待商榷,甚至有誤解典範理論之處。孔恩雖然指出常態科學(normal science)是科學發展的動力,但他同時也認為常態科學是科學發展的阻力。 原因在於,常態科學可以提供理論基礎、提供世界觀(worldview),奠定科學社群的努力方向,使得各種案例、證據、與應用能夠大量累積,直到出現太多無法被既有典範吸納的「異例」(anomaly),才會逐漸導致既有理論失去公信力以及新理論的興起,然而,在提供路徑(approach)的同時,常態科學其實也在限制科學社群的研究取向,哪些問題應該被問、哪些主題值得研究、哪些答案算是合理,幾乎都被常態科學給定,也因此常態科學屬於類似「拼圖」 的解謎活動:我們大致知道圖案為何,因此總是能夠拼出最終圖案。換句話說,依循常態科學來做研究幾乎「保證有解」。這就是孔恩學說最為曖昧的地方,因為有些人強調典範作為動力的正面效果,而另一些人則聚焦典範作為阻力的負面效果。孔恩把這種既是動力又是阻力的典範特質,稱之為「必要的緊張關係」(the essential tension)。

Photo Credit: Dennis Wilkinson (CC BY-NC-SA 2.0)
Photo Credit: Dennis Wilkinson (CC BY-NC-SA 2.0)

孔恩根據他的科學史研究,認為新的理論之所以能夠取代舊的理論,很多時並不是因為新理論比舊理論能夠解釋更多的現象、或者比舊理論有更準確的預測能力,而是經過科學革命以後,整個「問題意識」都轉換了:哪些現象需要被解釋、哪些事情值得預測,都已經不同於以往。換句話說,我們無法衡量或比較新理論與舊理論哪一個比較好(或者這樣說──哪一個比較科學),因為就連比較的參照點都已不再相同。這就是孔恩一直到過世之前仍然堅持(與修補) 的「不可共量性」(incommensurability)概念。所以,不同於 Gene 文所言「相對論與量子力學的出現,是因為當時已經無法用牛頓力學解釋的現象愈來愈多了,於是就出現了相對論和量子力學」,孔恩自始至終都認為愛因斯坦相對論與牛頓物理學兩者無法比較誰的解釋能力比較強,因為就即使是一樣的質量(mass)一詞在兩個理論中都在指涉不同的東西。對於孔恩來說,新理論能夠解釋的現象越來越多,是在新理論已經逐漸成為新典範之後──有越來越多的科學家投入新理論並證明它──而不是之前。換句話說,愛因斯坦相對論的創生主要不是要用來解釋牛頓物理學無法解釋的現象,而是在前者的導引之下有越來越多人注意到後者無法解釋的現象,然後再回過頭來說後者的「無能」。

-----廣告,請繼續往下閱讀-----

更值得注意的一點是,如果兩個理論無法比較,那麼科學社群究竟要選擇哪一個?或者,我們要怎麼解釋新理論「贏了」?對於孔恩來說,新理論其實沒有贏:科學社群之所以採納新理論而忽視或拋棄舊理論,不是因為科學家們經過實驗(精確地說是「決斷實驗」)而獲得較多的證據數量或較高的證據強度,而是因為舊理論的支持者逐漸凋零、退出、與死亡。也就是說,典範轉移(paradigm shift)是一個與時間推移有關的淘汰過程。另一方面,科學家個人選擇何種理論其實受到許多因素的影響,包括那些被視為「不科學」的因素,美學就是其中之一。例如,克卜勒(Kepler)(對,就是孫燕姿歌裡唱的那個)的 「行星軌道為橢圓形」之說,之所以要在他死後幾個世代才漸漸被接受與承認,其中一個重要原因,就是他的學說與主宰西方千年以上的亞里斯多德 (Aristotle)學說相互衝突:亞里斯多德認為天體的運動軌跡必然是圓形(天體本身也是圓形),原因無他──因為圓形是最完美形狀,而「天」體屬於 神聖領域,當然要是圓形。

那麼,我們能說後人(克卜勒)比前人(亞里斯多德)更科學,所以不會再被「美學」這種沒有科學根據的因素「誤導」嗎?,孔恩認為,美學偏好在理論選擇與理論創生上一直扮演重要角色,例如公式是否簡潔、結構是否對稱…等,而我們找不到什麼「科學」證據來支持這些偏好。相反地,我們甚至有可能找到這種偏好對於理論創生與選擇的不利影響,例如略去太多細節以至於方程式過於「理想」,導致理論總是需要「特置假設」(ad hoc hypothesis)來保護與補救。

孔恩給出的科學史研究,之所以成為當代許多學科──無論人文或理工──以及科學哲學(一個有許多理工博士或教授參與的領域)無法繞過的重要著作,正是因為他給出了一個重要啟發:我們永遠無法知道我們是否絕對正確,也不知道當前的典範可以走得多久多遠,很可能今日的常態科學到了下一個十年、二十年已經不再常態。換句話說,愛因斯坦很可能成為後世眼中「曾經偉大」的科學巨人,就像亞里斯多德那樣──他有一整套科學理論、曾經被視為科學的代表,但對於當代來說只有去哲 學系才會需要讀他。有了對於孔恩的這個理解,王文的憂心與批評──主流科學正在不斷排除各種邊緣學說──就不難理解了。我想,對於王大師來說(雖然我沒真 的問他),這才是真正的問題所在,而 TED 只是具體而微地再現了這個現象。就這一點來說,我確實有與王文相同的擔心:如果我們只注意常態科學的正面作用,那我們可能忽視這個正面作用所帶來的封閉效 果;如果我們真的嚴刑峻法地排除任何不符合當前常態科學的觀點,那麼我們很可能因此屏棄具有價值的學說(最好的例子是「中醫」),或者拖延與扼殺新理論的 提出。

不過,王文也有值得疑義之處。從王文的字裡行間看來,頗有一點「TED 故意如此」或者 「TED 主導一切」的陰謀論意味,但對於 TED 刪除兩個演講的現象,我大概不會做這樣的解讀。就像 Gene Ng後來在個人部落格追加的〈為何倡導偽科學是犯賤?〉提到,TED 刪除兩個演講其實「有咨詢網友的意見並開放討論」,這表示至少 TED 不是專斷獨行。不過,兩則演講爭議性極高以至於「下架」一事,其實更突顯了當代科學的典範「力量」,因為就連大部分聽眾(至少英語系聽眾)都認為兩個演講 「不科學」,這不啻是當代科學「常態化」的最佳例證。也正因為如此,我們很難說 TED (或科學家、或民眾)是「故意」排除那些不符主流的演講,因為長期在典範下工作與學習的人們,往往是「真心」相信常態科學的正確性與真實 性,而不是因為有「利害考量」──例如擔心另類理論成真會讓自己失去工作與名聲──所以抵抗與排斥。換句話說,王文對於 TED 以至於整個主流科學的陰謀式理解很可能走得太過了。對於常態科學的負面效果過於強調與提防,有時反而會讓我們輕易指責那些支持主流論述的人們。 Intellectus stovyklos vaikams Kaune, Vilniuje bei anglų kalbos kursai Klaipėdoje

-----廣告,請繼續往下閱讀-----
TED 網站首頁(2014-07-15)
TED 網站首頁(2014-07-15)

如果要說王文與 Gene 文的爭議可以帶給我們什麼啟發,大概可以這樣來說:我們必須同時注意到當代(常態)科學作為動力與阻力,不論是在評論時或實作上,捨棄任何一個都有欠公允。在 大部份的時候,當代科學都能給出紮實的證據以及可靠的預測,成為日常生活與國家發展不可欠缺的要素,但我們不能因此不給另類觀點保留空間,因為我們始終不 知道它們會不會是下一個典範、或者是下一個被稱為「(真)科學」的東西。不過,這也不表示我們要給予這些另類觀點大量的發展資源與投注,因為我們始終需要 面對一個實際問題:金錢與人力有限。在這種無可避免的條件限制下,選擇投資與挹注「一定有解」的常態科學是比較保險與務實的作法(註)。簡單來說,就像生物多樣性一樣,我們必須尊重自然界的天擇淘汰機制,但卻也需要保護那些快要滅絕的物種。面對常態科學的動力與阻力,「留下後路」或許是取得平衡──有益的緊張關係──的最好辦法。

至於 TED 事件本身,我認為它完全有權利作為一個「論述守門人」,只要它能夠承認自己並非中立而有過濾,而且我們也不再誤認 TED 只是個管道。更重要的是,TED 必須說明之所以兩則影片──以及未來任何影片──上架卻又下架的原因。TED 標語「Ideas Worth Spreading」無論如何都暗示了存在某些判斷「值不值得」的標準,而公開「這些標準是什麼」會比不予說明要來得更好,至少對於熟悉或 重視典範負面作用的聽眾來說,有助於增加 TED 的公信力、減少被慣以陰謀論詮釋的機會。TED 也不需擔心會因此減損在一般聽眾心中的可信度,因為在他們原本就接受與遵循常態科學的情況下,TED 的篩選標準看來暨合情又合理,甚至可以被視為正在捍衛科學呢!

註:換句話說,我們不需要像費若本(Feyerabend)「Anything goes!」一樣走得那麼遠。

參考書目:

-----廣告,請繼續往下閱讀-----

原刊載於HOT PoT,作者投稿後刊載。

-----廣告,請繼續往下閱讀-----
文章難易度
洪靖 Ching Hung
5 篇文章 ・ 0 位粉絲
從原子科學轉向歷史學再跑到社會學最終棲身哲學但始終很關心技術與科學的假研究者真部落客,現職〔社技哲學〕部落格站長順便擔任荷蘭 University of Twente 技術哲學博士候選人。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
骨鬆不是老化必然!健保放寬給付助攻「駝矮痛」不再來
careonline_96
・2025/07/09 ・3193字 ・閱讀時間約 6 分鐘
相關標籤: 骨密度檢測 (1)

-----廣告,請繼續往下閱讀-----

圖 / 照護線上

你知道嗎?國人一生中每 4 人就有 1 人面臨骨折風險,且首次發生骨折後,第二次再骨折風險高達 50%[1]!骨質疏鬆症正以無聲的方式威脅患者的生命安全。

「促骨生長藥物對骨質疏鬆症患者非常重要,在骨折發生前使用,可降低骨折風險;在骨折發生後使用,快速提高骨密度,也有助於預防再次骨折。」

中國醫藥大學新竹附設醫院骨科王韋智醫師表示,「健保對於骨質疏鬆症藥物給付條件,擴大「次級骨折預防」範圍包含:手腕(遠端橈骨)與上手臂(近端肱骨)骨折;並新增「初級骨折預防」,放寬至未發生骨折的高風險骨鬆患者包含糖尿病合併胰島素、類風溼性關節炎、和類固醇使用超過3個月者;幫助骨鬆的治療能更早介入而不再從「發生骨折後」才做起!」。(詳細涵蓋範圍請參考健保署公告,個案適用範圍請依醫療專業人員判斷及建議。)

圖 / 照護線上

善用健保擴增給付,往前擴大骨鬆防護

為了幫助骨質疏鬆症患者(T值小於等於-2.5)降低骨折風險,健保署已放寬給付條件。王韋智醫師說,在初級骨折預防方面,可適用在未發生骨折,其骨密度(BMD)檢測結果 T 值小於等於 -2.5合併類風溼性關節炎、糖尿病且使用胰島素或使用糖皮質類固醇(>5毫克/天)超過3個月的骨質疏鬆症患者。在次級骨折預防方面,過去僅適用於脊椎或髖部骨折,現在已放寬至手腕(遠端橈骨)與上手臂(近端肱骨)骨折的骨質疏鬆症患者或骨質疏少症患者。

-----廣告,請繼續往下閱讀-----

建議患者或家屬主動和醫師討論骨質疏鬆症的治療策略,選擇合適的治療方式,降低骨折的風險。(詳細涵蓋範圍請參考健保署公告,個案適用範圍請依醫療專業人員判斷及建議。)

骨質疏鬆症的現況與警訊

「骨質疏鬆症(Osteoporosis)」是一種慢性疾病,早期沒有明顯不適,很容易被忽略,許多患者都是在骨折發生後,才發現有骨質疏鬆症。王韋智醫師說,幾乎每天都有骨鬆性骨折的患者被送到急診室,因為不小心跌倒就造成髖部、脊椎、橈骨或肱骨骨折,除了造成劇烈疼痛、行動不便,也會嚴重影響生活品質、提高醫療花費、甚至增加死亡風險。根據統計,約有 20% 的髖骨骨折患者,在骨折發生後一年內會死亡[2],骨質疏鬆症是不容忽視的問題。

骨質疏鬆症早期症狀要留意三大警訊:「駝、矮、痛」,王韋智醫師解釋,「駝」就是駝背,當我們靠牆站立時,明顯感覺背部隆起或彎曲,背部無法完全貼平牆面,甚至肩膀前傾,這通常是因為脊椎骨壓迫性骨折或椎體結構變形所導致。「矮」是身高明顯縮水。很多患者會發現自己「比以前矮了4公分以上」,這是因為脊椎椎體塌陷、變扁所導致的整體身高減少。「痛」是下背痛或腰痛,通常是慢性的、鈍鈍的不適感。

這些症狀常被認為是老化的現象,而遭到忽視。其實這些都是骨骼結構正在退化的重要警訊,若能及早發現、及早治療,能夠有效預防骨折的發生。

-----廣告,請繼續往下閱讀-----
圖 / 照護線上

留意骨質疏鬆症高風險因子、早期篩檢

至於骨質疏鬆症的高風險族群則包括停經後女性、老年人、體重過輕、缺乏運動、抽菸、喝酒、長期使用類固醇、缺乏鈣質與維生素 D 和其他內分泌疾病等。王韋智醫師說,「臨床上曾經遇過四十多歲便有骨質疏鬆症的女性患者。因此建議高風險族群要就醫接受骨密度檢測,留意自身骨骼健康,並積極接受治療。」

雙能量X光吸收儀(Dual-energy X-ray Absorptiometry,DXA)是診斷骨質疏鬆症的標準檢查,利用 X 光檢測骨密度,在無痛的狀況下,平躺大約5分鐘便能完成。王韋智醫師說,檢測的骨密度報告會標示T值(T-Score)。當T值落在 -1 至 -2.5 代表骨密度減少,稱為「骨質疏少症」;當 T 值小於等於 -2.5 即可診斷為「骨質疏鬆症」;而當T值小於 -3 則屬於「極高骨鬆性骨折風險族群」。

圖 / 照護線上

骨鬆治療策略:先行提升骨密度,有效降低高骨折風險

骨質疏鬆症的治療方式包含藥物治療搭配日常照護。王韋智醫師表示,藥物治療主要分為兩大類,促骨生長藥物與抗骨流失藥物。促骨生長藥物讓身體能夠「開源」長出新骨頭、快速提升骨密度;抗骨流失藥物可延緩骨質流失的速度,就是「節流」的概念。王韋智醫師說,目前治療會採取「先行增加骨密度,鞏固骨骼」策略,先以促骨生長藥物進行完整療程,快速提升骨密度,降低骨折風險,並遵造醫囑以抗骨流失藥物銜接,發揮長期保護的效果。再搭配日常照護包括飲食營養均衡、攝取足夠的鈣質與維生素 D、規律運動等。

筆記重點整理

  • 「骨質疏鬆症」早期無明顯不適,容易被忽略,許多患者都是在骨折發生後,才發現有骨質疏鬆症。骨鬆性骨折除了造成劇烈疼痛、行動不便,也會嚴重影響生活品質、提高醫療花費、甚至增加死亡風險。
  • 醫師建議,及早進行 DXA 骨密度檢測,民眾亦可先自我留意骨鬆「駝、矮、痛」三大警訊,如發現駝背、背部靠牆壁站立時後腦勺與牆面會間距超過 3 公分以上、身高變矮 4 公分以上,或是經常感到下背痛,就要立即諮詢專科醫師,評估是否有骨質疏鬆症。
  • 骨質疏鬆症的藥物治療主要分為兩大類,一類是促骨生長藥物,讓身體能夠「開源」快速提升骨密度,降低高骨折風險;另一類則是抗骨流失藥物,主要用來延緩骨質流失的速度,就是「節流」的概念。目前針對高風險的骨鬆患者的治療策略,遵照醫囑考慮「先使用促骨生長藥物,再以抗骨流失藥物銜接」,以遠離骨折風險為目標。
  • 為了幫助骨質疏鬆症患者降低骨折風險,健保署已放寬骨質疏鬆症健保用藥給付,可幫助高風險族群進行初級與次骨折預防。當 BMD 檢測結果 T 值小於等於 -2.5 ,合併有糖尿病使用胰島素、類風溼性關節炎或長期使用類固醇(>5mg/day)超過3個月,可透過健保給付的治療藥物進行初級骨折預防治療;新增手腕(遠端橈骨)、上手臂(近端肱骨)骨折可適用骨質疏鬆症和骨質疏少症患者的次級骨折預防治療。(詳細涵蓋範圍請參考健保署公告,個案適用範圍請依醫療專業人員判斷及建議。)
  • 醫師呼籲:高風險族群應「及早篩檢、積極治療、預防骨折」,並善用健保的擴增給付、擴大骨折保護進行合適的骨質疏鬆症治療與預防,及早遠離骨折風險及早關心自身的骨骼健康。

本衛教訊息由台灣安進協助提供
TWN-785-0525-80011

參考資料:

[1] 中華民國骨質疏鬆症學會。台灣成人骨質疏鬆症防治之共識及指引。2023 年版

-----廣告,請繼續往下閱讀-----

[2] Ip TP, et al; OSHK. Hong Kong Med J 2013 Apr;19 Suppl 2:1–40.

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】聞雞起舞:勤奮背後的生理時鐘
張之傑_96
・2025/07/05 ・1494字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

晉朝分為西晉和東晉兩個階段。西晉末期,二十來歲的祖逖和劉琨,在京城洛陽當個小官,兩人是很要好的朋友。當時內憂外患不斷,兩人都有大志,一心報效國家。

祖逖和劉琨經常住在一起,天將亮時,一聽到雞叫聲,就起來舞劍,希望能文能武。這就是成語「聞雞起舞」的由來。因此聞雞起舞,比喻勤奮向上、努力不懈。

晉朝祖逖劉琨聞雞鳴,共舞劍,立志勤奮。後世也以聞雞起舞,形容一個人勤奮、努力不懈。圖 / unsplash

西元 311 年,匈奴人攻入洛陽,北方大亂。317 年,琅琊王司馬睿(晉元帝)在建康(今南京)即位,史稱東晉。在這之前,史稱西晉。當北方陷入混亂時,祖逖率領一批人南下,輔佐晉元帝,封為鎮西將軍。劉琨留在北方抗擊異族,做到都督。兩人都發揮了各自的文韜武略。

談到這裡,該造兩個句了:

-----廣告,請繼續往下閱讀-----

我們要有光明的前程,就要學習聞雞起舞的精神,勤奮學習。

他天一亮,就起來鍛鍊身體,這種聞雞起舞的精神令人欽佩。

接下去要談談這個成語的科學意涵了。公雞之所以在破曉時啼叫,主要是「生物鐘」的關係。生物的生長和作息,都有一定的規律,這就是生物鐘。譬如牽牛花都是早上開花,蟋蟀傍晚後才會鳴叫,類似的例子不勝枚舉。

公雞呢?脊椎動物的大腦與小腦間,有個內分泌器官,叫做松果腺。晝行性動物,到了晚上松果腺會分泌褪黑激素,讓動物安然入睡。天亮時受到光線的刺激,褪黑激素分泌減少,動物就會醒來。公雞對光線的變化特別敏感,破曉時的微弱光線變化,也會讓牠醒過來,昂首啼叫。人們聽到公雞叫聲,就知道天要亮了。

公雞的大腦裡有松果腺,能感受破曉的微光變化,天一亮就減少褪黑激素分泌,牠便會醒過來,昂首啼叫。圖 / unsplash

公雞一般在天剛亮時啼叫,夏天在四、五點鐘,冬天在五、六點鐘。在沒有鐘錶的時代,公雞報曉是人們的重要時間指標。章老師小時候家裡沒有鐘錶,主要靠公雞啼叫,和固定時間前來叫賣的小販吆喝聲,知道大概是什麼時候了。

那麼,公雞醒來為什麼啼叫?雞是一種群居性動物,每個群體由一隻強壯威武的公雞當領袖。啼叫主要是宣示領域,也就是告訴其他雞群,這個地盤是我的,你們不要進來。

-----廣告,請繼續往下閱讀-----

因此,破曉時一隻公雞啼叫,附近的公雞就會跟著啼叫,都是宣示領域的意思。既然公雞啼叫是一種領域行為,所以公雞白天也會啼叫。小朋友,你到動物園的兒童動物區遊玩,聽過大白天公雞啼叫嗎?

寫到這裡,還有點空間,順便介紹另一個成語——擊楫中流。祖逖率軍北伐,渡過長江,船到中流時,他慷慨激昂的擊打著船槳,立誓恢復中原。這個成語用來比喻:成就一件事的決心和激情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。