Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

褐碳?黑碳?印度火葬儀式對懸浮微粒的影響

陳妤寧
・2014/03/21 ・1710字 ・閱讀時間約 3 分鐘 ・SR值 538 ・八年級

-----廣告,請繼續往下閱讀-----

文 / 陳妤寧

印度和尼泊爾戶外火葬儀式燃起的熊熊大煙(圖片來源:Philip Milne)
印度和尼泊爾戶外火葬儀式燃起的熊熊大煙(圖片來源:Philip Milne)

亞洲的空氣污染問題令人頭痛多時,據印度《浦那鏡報》(Pune Mirror)報導,印度各城市的黑碳懸浮微粒排放量在這五年來已經升高到 10 ~ 37% 之間不等;《印度時報》(The Hindu)的報導則指出新德里罹患呼吸系統疾病的兒童和嬰兒不斷增加。

美國內華達州的沙漠研究所(Desert Research Institute,DRI),將亞洲空氣污染的研究矛頭指向了當地印度教的戶外火葬儀式。來自印度東北方的恰克拉巴提教授( Rajan K. Chakrabarty),特別到印度中部的恰蒂斯加爾邦(Chhattisgarh)七個火葬場以篩網取樣,分析燃燒形成的化合物成分,研究這項南亞特產的污染源和西方實驗室所研究的懸浮微粒成分有何不同。

前情提要:「黑碳懸浮微粒」是什麼?

因煤炭、木材及牛糞等燃料的不完全燃燒而釋放的黑碳懸浮微粒不但有害人體健康,還會吸收太陽輻射能,使得大氣層中的溫度上升,產生我們所熟知的溫室效應。在眾多溫室氣體之中,黑碳懸浮微粒正是僅次於二氧化碳之後最具威力的角色之一。

-----廣告,請繼續往下閱讀-----

亞洲焚燒大量煤炭、木材、農作物的殘枝與稻糠,黑碳微粒沈積導致冰河吸收了更多的太陽輻射,大氣中的黑碳微粒也形成暖化效果,使得喜瑪拉雅山的冰川加速融化。

此外,過高濃度的碳微粒,因為在空中吸收的水氣不足,不易凝結成雨滴,反而形成在空中長時間停留的「褐雲」霾害。當地的降雨量、能見度、乃至於作物產量都會受到影響。

研究結果:不是黑碳,是「褐碳」?

過去的研究一向認定化石燃料和生質燃料產生的黑碳懸浮微粒是南亞懸浮微粒的主要來源,但恰克拉巴提的研究結果卻出人意料。火葬場的取樣篩網皆明顯呈現黃褐色,這種「褐碳」屬於另一類型的懸浮微粒,同樣會吸收太陽輻射能,但強度略遜黑碳一籌。

在印度和尼泊爾,每年有七百萬以上的往生者需要火化為安,當地印度教的戶外火葬儀式每次需搭起約 550 公斤的木柴堆,混合牛糞、樟腦、芒果樹皮,燃燒四到六個小時。這些柴堆每年大約會消耗 5000 萬到 6000 萬棵樹。

-----廣告,請繼續往下閱讀-----

研究人員估計經火葬所排放的懸浮微粒,相當於每年化石燃料和生質燃料的懸浮微粒排放量的 23% 和 10%,也是家戶日常活動排放的 53 倍。雖然以全球的規模來看,火葬排放的懸浮微粒占比並不高,但以往在西方國家實驗室主導的氣候研究中,黑碳是模型中常定義的懸浮微粒來源,褐碳做為溫室氣體的效果卻很少受到注意。除了吸收太陽輻射的強度有異,褐碳對於氣候暖化可能有更複雜的冷暖雙向調節作用,有必要納入現有的暖化研究模型中重新估算。

堅持環保 v.s. 尊重文化

火葬儀式深植於當地人的信仰核心,他們相信這是讓往生者的靈魂脫離軀殼、通往神界的方式。許多印度家庭甚至不希望恰克拉巴提的研究團隊涉入火葬儀式進行碳微粒採樣。恰克拉巴提說:「這個儀式攸關當地人的情感和信仰。如果你強迫終止它,也許對環境較好,但是沒有人知道死後的世界會是什麼樣子,而這點對印度人來說是至關重要的。」

也質疑當地的工業活動或政府大型建設對碳排放有更劇烈的影響,卻拿民眾的火葬儀式開刀,是否只許州官放火,不許百姓點燈?無論如何,印度都沒有足夠的空間進行土葬,當地社會組織和政府持續推動火葬的替代或改良方案,例如價格不匪且接受度不高的電力焚化爐,或是可減少所需木材和焚燒時間、同時兼顧儀式需要的慕西達焚燒台(Mokshda),近年來都在印度民間逐漸獲得更高的接受度。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威|元智大學資訊社會研究所

-----廣告,請繼續往下閱讀-----

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:
-----廣告,請繼續往下閱讀-----
文章難易度
陳妤寧
38 篇文章 ・ 1 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
1

文字

分享

1
4
1
臺灣的空污問題與眾不同,如何使空污預報更精確?先瞭解大氣邊界層和感測物聯網吧!
研之有物│中央研究院_96
・2022/10/16 ・6113字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

你以為的大氣,不是真實的大氣!

大氣邊界層是人類的生活範圍,也是大部分空氣污染物存在的地方。然而,傳統氣象學模擬的大氣邊界層結構並不符合臺灣的真實情況,因此真實的空氣污染現象和理論的模擬預測間往往存在顯著的差異,導致污染防制策略缺乏精確的指引。

中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,他是建立空品專題中心的主要推手,研究團隊從大氣結構出發,試圖改善臺灣空氣品質的診斷及預報,這項計畫集結了來自民生公共物聯網國家高速網路與計算中心環境保護署等跨部門的資源,以下讓我們一起看周崇光怎麼說。

中研院環變中心研究員兼空品專題中心執行長周崇光。圖/研之有物

根據國際貨幣基金組織(IMF) 2021 年的報告,臺灣位列全球第 22 大經濟體,這個只有 3.6 萬平方公里的小小島國,一年內卻可以創造出高達 7,855.89 億美元的市場價值。

-----廣告,請繼續往下閱讀-----

在美國國家航空暨太空總署(NASA)公布的地球夜景照中,我們彷彿可以看見,高樓一棟棟升起、工廠一座座建成、百貨一間間林立,在又長又窄的西半邊,從北到南形成臺北、臺中和高雄三大都會區。

西部臨海,東部靠山,這個寬度可能不到 100 公里的窄長地區,不僅聚集了臺灣 2,300 萬人的極大多數人口,凝聚出商業與工業的巨大產能,更集結了大量、複雜的「空氣污染物」。中研院「研之有物」專訪周崇光研究員,請他從空氣品質與都市氣象學的角度,細細剖析空污議題在這座海島上的獨特之處。

ASA 在 2016 年 12 月 31 日拍攝的夜景照,可看出臺灣有北、中、南三大亮區。圖/NASA

臺灣雖然小,但空汙問題好複雜!

臺灣國土面積僅有 3.6 萬平方公里,以大氣尺度來看非常的小,然而,我們在空氣污染面臨的挑戰卻異常艱鉅。

臺灣不僅處於許多境外污染源的下風處,接受來自各方的空氣污染物,各大都會區也因為地形的關係吃足了苦頭,整個中西部更是在窄長的地域中,面臨來自山、海的多重影響。

-----廣告,請繼續往下閱讀-----

以下圖的臺中都會區為例,臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。

盆地內的空氣污染物原本就不容易擴散,再加上複雜的大氣環流和大氣化學反應,讓臺中的空氣品質狀況非常、非常的複雜,無法使用現有的大氣理論進行簡單的描述,使得大氣科學家極為不易於觀測和研究臺中的空污情形。

「這裡就像是巫婆煉湯一樣。」周崇光這麼說。

臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。圖/研之有物(資料來源/周崇光)

臺灣在東北風的影響下,不適合傳統的高煙囪理論

周崇光笑著說,到處觀察「煙囪」是他的職業病。

-----廣告,請繼續往下閱讀-----

大陸環境的大氣結構相對簡單,自歐洲工業革命開始,傳統大氣科學的理論都告訴人們:越高、風越大,只要把煙囪建得高高的,就可讓風把污染物吹散、吹到很遠的地方。

平坦的大陸環境中,把煙囪建高可以讓煙流擴散及傳輸至很遠的地方。圖/rawpixel

「到了大陸國家,你會發現他們煙囪排出來的煙,經常是非常穩定的水平煙流,可以飄得很遠,這種煙流挾帶著空氣污染物飛到 10 幾公里外都不是問題!」,然而反觀臺灣的煙囪,卻很少出現這樣的水平煙流。

中研院空品專題中心對臺中火力發電廠的煙流觀測顯示,傳統高煙囪設計反而容易讓煙流進入「污染累積區」,在高度 450~800 公尺左右,橘色區域的空氣層風速僅有 0.5~3 公尺/秒。不同折線表示有兩個時段,分別是觀測當天凌晨 1 點到 3 點(紅線),以及晚上 19 點到 21 點(黃橘線)。圖/研之有物(資料來源/周崇光)

根據中研院空品專題中心對火力發電廠的煙流觀測資料,如果臺灣的煙囪蓋得跟大陸國家一樣高,有時候反而容易造成空氣污染物的累積。

從上圖可知,當臺灣處在微弱東北風的大氣環境之中,西部沿海風速最快的大氣區域(藍底),大約落在 200~400 公尺高之間,此區的風速大約為 5~6 公尺/秒左右,以東北風為主,是空氣污染物的「最佳擴散區」。

-----廣告,請繼續往下閱讀-----

若是再往上,到了 450~800 公尺左右,風速驟然下降(橘底),僅有 0.5~3 公尺/秒。這個區域的大氣就像是被下層的東北風與上層的南風「夾擊」一樣,在兩個不同方向的風的對切之下,形成一個風速很低的「污染累積區」。

因此,若臺灣真的按照傳統的大氣理論建造高煙囪時,反而會讓煙囪的高溫煙流進入污染累積區;換個做法,如果煙囪低一點,才可以被強風吹散。

不過周崇光話鋒一轉:低煙囪設計要相當謹慎,也很難推行。高溫煙流排出去會有很明顯的白煙(水蒸氣凝結),一般人都不喜歡看到白煙離居住地太近,因此實務上還會特別做加熱設計,讓煙流先往上浮,再擴散,等於加高了煙囪的高度,這在工程上稱為「有效煙囪高度」。降低煙囪高度除了有視覺污染的問題,污染排放點離民眾越近,當工廠發生緊急異常排放時,異常事件的衝擊風險也會越大。

和傳統理論不一樣?那就做出臺灣自己的資料吧!

這麼經典的高煙囪理論,為什麼不能用在臺灣?

-----廣告,請繼續往下閱讀-----

周崇光表示,大氣科學的理論大都源自於美國、歐洲,使得傳統大氣理論都更適用於大陸環境之下,因此難以直接應用於臺灣地狹人稠的海島結構,而中研院空品專題中心的目標之一,就是發展出屬於臺灣的「空污氣象學」。

周崇光提到:「臺灣跟大陸國家的空間條件實在差太多,所以我們必須要更精確知道,臺灣空氣污染物的高度分布到底長什麼樣子,才能更有效的管制並改善空品狀況。」

既然臺灣無法參考大陸型國家的大氣狀況,那麼小一點的、近一點的國家呢?韓國、日本的有沒有參考的價值?

周崇光笑著說,「你知道嗎?臺中盆地也才 10 幾公里,但是外圍的中央山脈高達 3,000 公尺以上!」就算是韓國、日本,它們的地理空間也比臺灣大多了,而且地形也沒有這麼複雜。

-----廣告,請繼續往下閱讀-----
臺中盆地的衛星空照圖。圖/Wikipedia

當這麼多的工廠、車輛都擠在這小小的區域,究竟會對臺灣的空氣品質造成多嚴重的後果?某種程度來說,這也許是個細思極恐的問題呀。

因此,為了國內空污氣象學的發展,搞懂臺灣的大氣邊界層(Atmospheric boundary layer)是刻不容緩的工作。

大氣邊界層除了是人類的生活範圍,也是大部分的空氣污染物存在的地方,又被稱為行星邊界層(Planetary boundary layer)。在氣象學中,大氣邊界層指的是「直接受到地表作用影響」的大氣,高度從地表一直到數百至數千公尺不等,是大氣層中最靠近地球表面的部分。

然而,傳統氣象學所模擬出來的大氣邊界層結構並不符合臺灣的真實情形,因此,大氣科學家必須釐清大氣邊界層的氣象參數、動力機制,未來才能夠更精準的找到影響都市氣象以及空氣品質的關鍵因子。

但周崇光也感慨的說,「坦白講,目前臺灣還沒有辦法很『系統化』的改善邊界層的模擬條件,但我們仍然不斷的在努力,透過很多很多的調查、研究、模擬參數,漸漸地發展出半經驗、半理論的結構,最終的目標是歸納成一個系統性的成果,作為臺灣空污氣象學最扎實的理論基礎。」

-----廣告,請繼續往下閱讀-----

從大規模的調查研究、積極補足知識的缺口、重新建立理論模型,到回頭檢視國家的空污防制策略,大氣科學家必須腳踏實地的、一步一步的,藉由大氣科學研究的力量,才能讓空氣品質管制更上一層樓。面對迫切的空氣污染防制議題、空污氣象學理論的不足,「空氣品質專題中心」也應運而生。

中研院在「大氣物理與化學」的研究群早已相當成熟,有著極為厚實的研究經驗和基礎,然而為了讓研究目標更明確、進一步聚集研究能量並進行跨部門的合作,中研院以提出空污議題的科學解釋與建議對策為目標, 2021 年 1 月在環境變遷研究中心之下成立空氣品質專題中心,成為全國規模最大的空氣品質專業研究機構。

除了宣示中研院對空污議題的重視之外,如此一來,研究預算的匡列、人力的評估,都有更紮實、更有架構的基礎。擺脫以往研究員們「自動自發」的空品研究,在中心的管理之下,空污的學術研究更能夠產生聚焦效果。

更精確的空氣品質預報

如果大家點入行政院環保署的空氣品質監測網,可以發現,目前來自中央監測的空氣品質預報的解析度並不高,由於空品狀況站數僅有 85 站,只能以「北部」、「竹苗」、「宜蘭」、「花東」、「中部」、「雲嘉南」、「高屏」等大範圍空品區進行未來三日的預報,尚無法以「縣市」或更小的區域為單位提供精準的預報。

全國空氣品質指標的測站點位圖,可看出共有 85 個測站。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網
未來三日空品區預報,目前僅能呈現大範圍空品區預報。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網

因此,為了提供更先進的空氣品質預報,致力掌握國內 PM2.5 及 O3 等空氣污染物濃度變化情形的「高解析度空氣品質診斷與預報模式發展計畫」,是空品專題中心相當關鍵的研究計畫之一,此計畫是行政院前瞻基礎建設中「民生公共物聯網數據應用及產業開展計畫」的一個分支,集結了中研院、國家高速網路與計算中心、環保署等跨部門資源。

該計畫預計發展一套 1 km*1 km 高解析度的 72 小時空氣品質預報模式,並描繪空氣污染物的 3D 空間分布,預期能夠對臺灣地區 PM2.5 及 O3 生成與傳輸過程進行更精確的模擬,進而應用於空氣污染事件的預報和成因診斷。

周崇光將這個計畫比喻為一個「神經系統」,由環保署統合高達 10,000 個感測器,就像是神經系統中的神經元,負責感知大氣環境中的變化,並透過民生公共物聯網提供的神經網路,將資訊傳輸至國家高速網路中心的超級電腦,而超級電腦就像是大腦一樣,提供強大的運算力,使得空污模式得以統合氣象條件、污染物排放量、以及感測器提供的環境變化狀況,計算和預報未來幾天空氣品質的可能變化。

雖然感測器來源不一,不同層級的靈敏度也有所落差,但隨著近年技術的進步和突破,微型感測器對 PM2.5 的監測資料已經具有足供參考的準確度,目前各縣市大約都有 100 個以上的微型感測器,環保署已經在全臺灣佈建了約 10,000 個感測器,透過高密度的監測數據進行資料分析,有效掌握全臺各地的空品狀態。

環保署已佈建約 1 萬個微型感測器,可監測各地 PM2.5 狀態。圖片資訊日期為 2022 年 9 月 13 日。圖/air 空氣網

此外,此研究計畫也希望藉由感測器的大量需求,協助推動臺灣感測器的產業,與經濟部、工研院合作推動感測器的國產化。目前工研院的技術已經技轉給國內廠商,國產感測器在環保署監測網的佔有率已達將近 3 成,未來會持續輔導相關廠商。

研究計畫一邊發展預報系統,也一邊透過微型感測器資料即時驗證預報的成效。就像是如果寫考卷時,我們可以一填答就馬上得知正確答案時,就可以隨時檢討自己的計算流程到底哪裡出了問題,不斷修正,找出最正確的解方。

同理,拜微型感測器遍布全臺之賜,大氣科學家逐漸能夠快速驗證空氣品質預報的模擬結果,有朝一日,國內空污的物理化學機制以及關鍵污染源,將不再是讓人頭痛的黑盒子。目前由於 PM2.5 的感測器已相對成熟且數量足夠,因此中研院空品專題中心已成功驗證 3 km*3 km 解析度之 PM2.5 預報資料,最終目標是精確到 1 km*1 km。

影/YouTube
中研院周崇光團隊已成功驗證高解析度 72 小時 PM2.5 預報資料,每小時可模擬 3 km*3 km 空間解析度,最終目標是精確到 1 km*1 km。圖片預報日期為 2021 年 12 月 18 日~2021 年 12 月 20 日。圖/研之有物(資料來源/周崇光)

如何讓空氣品質變好,又不影響現有的生活?

在中研院環變中心周崇光研究員帶領下的空品專題中心,其中一個核心精神,就是要對社會關鍵議題有貢獻。

專注發表學術論文是科學研究的本質,也是科學進步的動力,不過進行社會議題相關的科學研究通常會更辛苦,往往會花費極大的心力與時間。

做空氣污染防制就像是「精準醫療」的概念一樣,如何讓藥物只攻擊癌細胞而不對身體的其他地方造成太大的副作用?經過科學研究的探索後,如何讓臺灣的空氣品質更好而不衝擊社會文化和經濟?

空污管制並非是一味阻擋臺灣經濟和工業發展,空品專題中心希望可以藉由科學的力量,更精準、更沒有副作用的改善臺灣空氣品質。

除了大氣科學理論和空氣污染排放清單有所不足之外,像是能源政策、交通規劃、國土計畫都需要重頭思考。周崇光說:「一路研究下去,我們開始疑惑,當初為什麼我們都傻傻的,把這麼多的大型污染源擺在海邊,讓海風把污染物往內陸帶?為什麼臺灣的國土利用那麼集中?」這一些命題,都是一環扣一環。

最後周崇光強調,「空氣品質絕對是應用導向的研究,因此,我們除了做科學,也要讓這些研究結果有願景、有視野,讓臺灣變得更好。」

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3649 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

9
4

文字

分享

0
9
4
塑膠微粒竟然出現在胎盤裡面!這一次,為什麼大家都擔憂了起來?
羅夏_96
・2021/01/16 ・2895字 ・閱讀時間約 6 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

塑膠的發明給現代人們的生活帶來極大的發展與便利,但隨著塑膠製品的大量使用,塑膠微粒 (Microplastics,簡稱 MPs) 也開始充斥、侵入我們生活的環境。

無論是食物還是大氣,人們都已經檢測到塑膠微粒的存在,其中,世界自然基金會(World Wide Fund for Nature,簡稱為 WWF) 2019 年的研究也顯示:

現代人平均一周會從食物、飲水中攝取到約一張信用卡量 (約 5 公克)的塑膠微粒1

塑膠雖帶給生活許多便利,但也讓我們生活的環境撐滿塑膠微粒。圖/cottonbro

雖然我們尚且無法確定塑膠微粒對人體到底會產生什麼影響,目前並沒有太多研究成功回答這疑惑,不過,近日科學家發表了一個讓人擔憂不已的研究結果,或許可以加快這方面的研究腳步。

這是一個來自義大利的研究團隊,近期在 Environmental International 發表了一項驚人的研究——塑膠微粒竟然出現在人類的胎盤裡面2

-----廣告,請繼續往下閱讀-----

為何在胎盤發現塑膠微粒這麼令人擔憂?

塑膠微粒目前雖未有明確的科學定義,不過各界普遍認為塑膠微粒是「直徑或長度少於 5 毫米 (5 mm) 的塊狀、細絲或球體的塑膠碎片」。

隨著化學工業技術的茁壯,輕巧便利的塑膠製品逐漸成為人類生活的一部分,同時塑膠微粒也已遍布我們身處的環境之中,此時,當學界研究證實「塑膠微粒已經出現在人體的器官與組織中」3時,大家應該都不覺得意外了吧。

然而,雖然人類會從環境中攝取塑膠微粒到體內不是什麼新鮮事,也尚未有更多證據顯示塑膠微粒對人體有害,但這次研究竟發現塑膠微粒出現在懷孕婦女體內的胎盤中,如此一來,情況可就不一樣了。

之前有研究證實塑膠微粒出現在人體器官,但日前出現在懷孕婦女體內的胎盤。圖/Daniel Reche

為什麼胎盤出現塑膠微粒值得大家警戒呢?

胎盤,是人類在妊娠期間,由胚胎和母體子宮內膜聯合長成的暫時性器官,負責協助母、子之間物質的交換。

-----廣告,請繼續往下閱讀-----

當胎兒在子宮內發育時,需依靠胎盤才能從母體取得養分,同時也需要透過胎盤排出廢物給母體,運輸過程中,胎盤也會幫助過濾母體血液中對胎兒有害的一部分物質註1,並讓養分、抗體和氧氣通過。

除了物質交換外,胎盤也會分泌一些激素來穩定母體的懷孕狀態與胎兒的生長,例如,胎盤會分泌黃體素來協助穩定母體的姙娠狀態,也會分泌人胎盤促乳素 (Human placental lactogen,hPL) 來促使胎兒成長與母體乳腺的發育。

由此不難看出,胎盤對於胎兒的發育是至關重要的器官,所以,當發現胎盤內出現塑膠微粒時,我們不得不考慮到塑膠微粒對胎兒的未知潛在風險,並對此感到相當擔憂!

塑膠微粒這麼小,很可能會穿過胎盤!

義大利研究團隊將六名健康產婦所捐贈的胎盤先以無塑膠程序註2保存起來,並從胎盤的三個部分——近母體側近胎兒側還有羊膜絨毛層分別取樣,接著將這些樣本以強鹼分解並進行分析。

-----廣告,請繼續往下閱讀-----

他們從樣本中發現 12 個直徑在 5-10 微米 (μm) 的彩色塑膠微粒,在 6 位產婦的胎盤中,有其中 4 個胎盤的樣本出現了塑膠微粒。

這 12 個塑膠微粒分布的位置如下:

  • 有 5 個在胎盤的近胎兒側
  • 有 4 個在近母體側
  • 有 3 個則在羊膜絨毛層
十二個塑膠微粒的顯微照片、拉曼光譜分析。圖/原始文獻

看到這裡也許你心想,咦,才 12 個塑膠微粒?這麼少的塑膠微粒有什麼好擔心的呢?

雖然檢測後只發現 12 個塑膠微粒,但你必須知道:研究團隊只取整個胎盤的 3% 做檢測!如果研究團隊檢測整個胎盤的話,發現的塑膠微粒數量恐怕很驚人。

-----廣告,請繼續往下閱讀-----

此外,胎盤中找到的塑膠微粒直徑非常非常小,僅有 5-10 微米,這麼小的塑膠微粒很容易在血液中流動並跑到人體中的各個器官,也就是說,很有可能會穿過胎盤並影響新生兒

研究團隊還不確定這麼小的塑膠微粒是怎麼進入母體血液中,可能先是經由呼吸或腸胃消化系統進入到母體血液,再從母體血液進入胎盤。

塑膠微粒會影響胎兒健康嗎?

必續再次重申的是,無論是塑膠微粒對於人體健康的影響,還是塑膠微粒在食品和飲用水中是否有毒性,都沒有足夠和確切的證據與研究。

英國南安普頓大學的哈德森 (Malcolm Hudson) 助理教授也曾表示,人們吃下的塑膠微粒大部分都能排出體外,倒不至於傷害人體。

-----廣告,請繼續往下閱讀-----

但我們不能忽略的是,部分「塑膠添加劑」確實會對人體造成影響,如環境賀爾蒙「雙酚 A 」的攝入,對於人體的生殖、免疫、神經和心血管系統等各方面都有著健康的潛在風險

因此,此研究團隊的主持人表示:

有鑑於胎盤是支持胎兒生長與過濾外來物質的重要角色,當我們發現塑膠微粒這種會造成潛在危害的物質出現在胎盤時,我們就必須投入更多心力,來了解塑膠微粒對人體的影響了。

因為胎盤是過濾外來物質的重要角色,因此了解塑膠微粒對人體的影響便更為重要。
圖/Kristina Paukshtite

當然,我們也需要更多深入研究,了解胎盤中的塑膠微粒會不會引起胎盤的免疫反應,還有塑膠微粒到底會不會進入胎兒體內,進而傷害胎兒。

幸運的是,捐獻胎盤給這篇研究的 6 位母親在懷孕期間都很正常,產下的新生兒也都相當健康。

事實上,除了塑膠微粒之外,2019 年來科學家也在胎盤中發現了母親吸入的空汙微粒。

-----廣告,請繼續往下閱讀-----

比利時哈瑟爾特大學的研究團隊發現「母體吸入的空污微粒可以穿透胎盤」4,在每個受試者的胎盤中,他們都能觀察到每立方公釐出現了數千個微粒!雖然這個發現讓人震驚,並發表於 Nature Communications ,但同樣的,我們還需要更多深入的研究,才能了解空汙粒子對於胎兒健康的影響。

隨著越來越多的研究顯示空汙粒子、塑膠微粒等物質會出現在胎盤,各界專家也紛紛針對此類研究表態,認為人們應該意識到後續所帶來的潛在危機,並加速整合各方面的研究,以確保胎兒的發育不會發生問題。

註解

  1. 胎盤無法阻擋所有有害物質,例如酒精、某些病毒(德國麻疹、茲卡病毒等)。
  2. 從胎盤的取下、運送、保存到實驗整個過程,該團隊都沒有讓胎盤接觸到塑膠製品。
  1. WWF : “Revealed : plastic ingestion by people could be equating to a credit card a week
  2. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., … & Giorgini, E. (2020). Plasticenta: First evidence of microplastics in human placenta. Environment International146, 106274.
  3. Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental science & technology49(15), 8932-8947.
  4. Bové, H., Bongaerts, E., Slenders, E., Bijnens, E. M., Saenen, N. D., Gyselaers, W., … & Nawrot, T. S. (2019). Ambient black carbon particles reach the fetal side of human placenta. Nature communications10(1), 1-7.
-----廣告,請繼續往下閱讀-----
羅夏_96
52 篇文章 ・ 893 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟