0

0
0

文字

分享

0
0
0

銀河系應是由內向外形成

臺北天文館_96
・2014/01/28 ・1746字 ・閱讀時間約 3 分鐘 ・SR值 580 ・九年級

 

 

銀河 photo credit: slworking2@ flickr
銀河 photo credit: slworking2@ flickr

天文學家Maria Bergemann等人利用蓋亞-ESO計畫(Gaia-ESO project)觀測資料,發現一個原本只存在於理論上的銀河系演化證據—銀河盤面上恆星化學組成有分異現象。藉由追蹤某些快速形成的元素,特別是鎂元素,這些天文學家可以定出銀河系各個部分的形成速度有多快。結果顯示銀河盤面的內部區域先形成,之後才逐漸形成外圍區域,符合認為銀河系應是由內向外而形成的理論預測。

利用在太空中的蓋亞衛星(Gaia)和歐南天文台(ESO)位在智利的8米超大望遠鏡(VLT),天文學家仔細研究銀河盤面上各種年齡和各種分佈位置的恆星,以便確認它們的金屬豐度(metallicity),也就是含有氫與氦以外其他重元素的比例。

宇宙經大霹靂產生的最初的元素主要是氫和氦,稱之為「輕元素」,其他氫與氦以外的元素統稱為「金屬元素」或「重元素」,是經由恆星內部核融合反應或是超新星爆炸等過程慢慢累積起來的。愈老的恆星代表它們是在愈久遠之前的宇宙時期形成的,因此愈老的恆星所含有的重元素愈少,以天文術語來說,就是金屬豐度比較低。140120090649-large

不同的恆星,製造元素的速率不同;例如在壽命短、很年輕就步入死亡之境的大質量恆星,和壽命可長達數十億年的類太陽恆星相較之下,便會擁有不同的化學組成。大質量恆星演化的比較快,在很年輕時就進入死亡階段;而在短暫壽命結束後,因重力塌縮而引發超新星爆炸時,會製造出大量鎂元素,會形成中子星或黑洞,甚至會促發新一代的恆星誕生。

從觀測資料,Bergemann等人發現位在太陽圈(Solar Circle,暫譯)以內、年齡較大的貧金屬星(metal-poor star)比較可能擁有較高的鎂豐度,這顯示太陽圈以內的這個區域擁有比較多演化的比較快、在很年輕時就死亡的恆星。所謂的太陽圈,是指太陽繞行銀河中心的公轉軌道,太陽約每2億5000萬年繞銀河中心公轉一周。反之,在太陽圈以外的銀盤外圍區域,主要是比較年輕的恆星,貧金屬和富金屬恆星皆有,但它們的鎂豐度相較於它們的總金屬豐度而言非常低。

這項發現有個重要的意義,因為這意味著銀河盤面不同部分的恆星演化有差異,太陽圈以內的恆星形成比較有效率,所耗時間較短,反之在太陽軌道以外之處,恆星得花比較久的時間才能形成,也就是說:銀盤外側區域所需形成時間比銀盤內側多,所以形成年代比銀盤內側晚。這個觀點與冷暗物質宇宙論(Cold Dark Matter cosmology)的星系形成與演化理論模型相符。

除了銀盤內外形成時間有早晚之差外,這項新研究還顯示關於銀河系盤面是否有薄銀盤(thin disc)和厚銀盤(thick disc)雙結構爭議的新線索。薄銀盤主要是旋臂、年輕恆星、巨型分子雲(giant molecular cloud)等較年輕的天體所在之處。天文學家長久以來一直推測銀河系應該有另一個銀盤,厚度比較厚,但比較短且比較老;這個厚銀盤應該擁有許多金屬豐度低的老恆星。

Bergemann等人的研究中發現:年輕薄銀盤裡年齡在0~80億歲之間的恆星,金屬豐度幾乎相同,且大多屬於富金屬星。而厚銀盤中典型的恆星是老恆星,但90億歲是個金屬豐度的大斷層,在90億歲以上的老恆星完全沒有富金屬星存在,全都是貧金屬星。不過,無論薄銀盤還是厚銀盤,都有各種年齡和金屬豐度的恆星分佈其中,並沒有完全分離。

這些天文學家認為:根據現有證據,銀河系顯然並非一個「二選一」的系統。在任何地方都可以發現不同年齡、不同金屬元素的恆星,厚銀盤和薄銀盤之間並無鮮明的分界之處。不同特性的恆星所佔的比例,在兩個銀盤中並不相同,這讓我們可以得知存有兩個銀盤,但這兩個銀盤可能有著迥異的起源。這項研究讓天文學家確定銀河系內側的厚銀盤形成的速度比薄銀盤快,因而在太陽鄰近區域的恆星,大都是以這類厚銀盤星為主。

厚銀盤的概念由Gaia-ESO計畫首席研究員Gerry Gilmore在約30年前提出的;理論上,厚銀盤可經由多種途徑形成,例如大量重力不穩定到銀河系形成期發生吞噬衛星星系的事件等,都是可能的原因之一。我們的銀河系在形成過程中曾吞噬過許多小型星系;現在經由Gaia-ESO巡天計畫,天文學家可以掌握到更佳的銀河系恆星的年齡-金屬豐度關聯性,以及銀河盤面的結構,藉此可仔細的追蹤研究這些吞併事件,就像是醫學解剖以追蹤病源的方式一樣。相信在數十年後,將開創一番新視野。

資料來源:Milky Way may have formed ‘inside-out:’ Gaia provides new insight into galactic evolution. [ScienceDaily , January 20, 2014]

本文轉載自網路天文館

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
952 篇文章 ・ 247 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策