0

0
0

文字

分享

0
0
0

銀河系應是由內向外形成

臺北天文館_96
・2014/01/28 ・1746字 ・閱讀時間約 3 分鐘 ・SR值 580 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

 

 

銀河 photo credit: slworking2@ flickr
銀河 photo credit: slworking2@ flickr

天文學家Maria Bergemann等人利用蓋亞-ESO計畫(Gaia-ESO project)觀測資料,發現一個原本只存在於理論上的銀河系演化證據—銀河盤面上恆星化學組成有分異現象。藉由追蹤某些快速形成的元素,特別是鎂元素,這些天文學家可以定出銀河系各個部分的形成速度有多快。結果顯示銀河盤面的內部區域先形成,之後才逐漸形成外圍區域,符合認為銀河系應是由內向外而形成的理論預測。

利用在太空中的蓋亞衛星(Gaia)和歐南天文台(ESO)位在智利的8米超大望遠鏡(VLT),天文學家仔細研究銀河盤面上各種年齡和各種分佈位置的恆星,以便確認它們的金屬豐度(metallicity),也就是含有氫與氦以外其他重元素的比例。

宇宙經大霹靂產生的最初的元素主要是氫和氦,稱之為「輕元素」,其他氫與氦以外的元素統稱為「金屬元素」或「重元素」,是經由恆星內部核融合反應或是超新星爆炸等過程慢慢累積起來的。愈老的恆星代表它們是在愈久遠之前的宇宙時期形成的,因此愈老的恆星所含有的重元素愈少,以天文術語來說,就是金屬豐度比較低。140120090649-large

不同的恆星,製造元素的速率不同;例如在壽命短、很年輕就步入死亡之境的大質量恆星,和壽命可長達數十億年的類太陽恆星相較之下,便會擁有不同的化學組成。大質量恆星演化的比較快,在很年輕時就進入死亡階段;而在短暫壽命結束後,因重力塌縮而引發超新星爆炸時,會製造出大量鎂元素,會形成中子星或黑洞,甚至會促發新一代的恆星誕生。

從觀測資料,Bergemann等人發現位在太陽圈(Solar Circle,暫譯)以內、年齡較大的貧金屬星(metal-poor star)比較可能擁有較高的鎂豐度,這顯示太陽圈以內的這個區域擁有比較多演化的比較快、在很年輕時就死亡的恆星。所謂的太陽圈,是指太陽繞行銀河中心的公轉軌道,太陽約每2億5000萬年繞銀河中心公轉一周。反之,在太陽圈以外的銀盤外圍區域,主要是比較年輕的恆星,貧金屬和富金屬恆星皆有,但它們的鎂豐度相較於它們的總金屬豐度而言非常低。

這項發現有個重要的意義,因為這意味著銀河盤面不同部分的恆星演化有差異,太陽圈以內的恆星形成比較有效率,所耗時間較短,反之在太陽軌道以外之處,恆星得花比較久的時間才能形成,也就是說:銀盤外側區域所需形成時間比銀盤內側多,所以形成年代比銀盤內側晚。這個觀點與冷暗物質宇宙論(Cold Dark Matter cosmology)的星系形成與演化理論模型相符。

除了銀盤內外形成時間有早晚之差外,這項新研究還顯示關於銀河系盤面是否有薄銀盤(thin disc)和厚銀盤(thick disc)雙結構爭議的新線索。薄銀盤主要是旋臂、年輕恆星、巨型分子雲(giant molecular cloud)等較年輕的天體所在之處。天文學家長久以來一直推測銀河系應該有另一個銀盤,厚度比較厚,但比較短且比較老;這個厚銀盤應該擁有許多金屬豐度低的老恆星。

Bergemann等人的研究中發現:年輕薄銀盤裡年齡在0~80億歲之間的恆星,金屬豐度幾乎相同,且大多屬於富金屬星。而厚銀盤中典型的恆星是老恆星,但90億歲是個金屬豐度的大斷層,在90億歲以上的老恆星完全沒有富金屬星存在,全都是貧金屬星。不過,無論薄銀盤還是厚銀盤,都有各種年齡和金屬豐度的恆星分佈其中,並沒有完全分離。

這些天文學家認為:根據現有證據,銀河系顯然並非一個「二選一」的系統。在任何地方都可以發現不同年齡、不同金屬元素的恆星,厚銀盤和薄銀盤之間並無鮮明的分界之處。不同特性的恆星所佔的比例,在兩個銀盤中並不相同,這讓我們可以得知存有兩個銀盤,但這兩個銀盤可能有著迥異的起源。這項研究讓天文學家確定銀河系內側的厚銀盤形成的速度比薄銀盤快,因而在太陽鄰近區域的恆星,大都是以這類厚銀盤星為主。

厚銀盤的概念由Gaia-ESO計畫首席研究員Gerry Gilmore在約30年前提出的;理論上,厚銀盤可經由多種途徑形成,例如大量重力不穩定到銀河系形成期發生吞噬衛星星系的事件等,都是可能的原因之一。我們的銀河系在形成過程中曾吞噬過許多小型星系;現在經由Gaia-ESO巡天計畫,天文學家可以掌握到更佳的銀河系恆星的年齡-金屬豐度關聯性,以及銀河盤面的結構,藉此可仔細的追蹤研究這些吞併事件,就像是醫學解剖以追蹤病源的方式一樣。相信在數十年後,將開創一番新視野。

資料來源:Milky Way may have formed ‘inside-out:’ Gaia provides new insight into galactic evolution. [ScienceDaily , January 20, 2014]

本文轉載自網路天文館

文章難易度

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

12
4

文字

分享

0
12
4
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
EASY天文地科小站_96
21 篇文章 ・ 832 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

6
1

文字

分享

0
6
1
謎樣的「超快自旋小行星」——什麼原因讓它自旋這麼快而不崩解?
科技大觀園_96
・2021/12/23 ・2604字 ・閱讀時間約 5 分鐘

超快自旋小行星的自旋週期小於兩小時。圖/沈佩泠繪

科學家相信,一顆小行星的內部可能是由一堆大大小小的碎片組成,這些碎片靠著彼此的重力聚集成一顆小行星,這就是所謂的「瓦礫堆模型」。瓦礫堆小行星無法自旋太快,如果自旋速度超過一個極限,整顆小行星就會遭受強大的離心力而崩解。瓦礫堆模型可以解釋為什麼小行星有一個自旋週期 2 小時的極限,因為超過這個極限,小行星就會瓦解。 

圖中的黑點是一般小行星,圖中虛線是 2 小時的自旋週期,藍色圓點是超快自旋小行星,它們的自旋週期比一般小行星快,短於 2 小時。圖/章展誥提供

「凡事都有例外」,這句話在小行星的自旋週期上也適用。2002 年,科學家發現一顆特別的小行星,它的長度大約 700 公尺,自旋週期只有半小時!這種小行星被稱為「超快自旋小行星」。這個例外讓天文學家感到困惑,是什麼原因讓它自旋這麼快而不崩解?瓦礫堆模型不適用了嗎?還有其他更多的超快自旋小行星嗎?這些問題就成了章展誥的研究主題。

如何量測小行星的自旋週期?

小行星本身不發光,只會反射太陽光。假設小行星的形狀是長橢圓形,當太陽照射到面積最大那一側,小行星看起來最亮;當太陽照射面積最小那一側,小行星看起來最暗。從小行星的亮度變化就可以知道它的自旋週期。 

從小行星的亮度變化可以推算出它的自旋週期。圖/沈佩泠繪

章展誥於 2011 年取得中央大學天文所博士學位,當時是跟隨高仲明教授研究銀河系結構。畢業後他先留在原團隊做博士後研究,後來轉跟隨葉永烜教授,與美國加州理工學院合作研究小行星的旋轉與結構模型,自此與超快自旋小行星結緣。

為了尋找其他的超快自旋小行星,章展誥利用加州理工學院帕洛馬瞬變工廠(Palomar Transient Factory)的 1.2 公尺廣視野望遠鏡,進行大量小行星自旋週期的測量。2014 年春季,他發現一顆疑似超快自旋小行星,這顆小行星的亮度相當暗,無法確定它是不是真的轉得很快,就像聽音樂時,音量很低,很難聽清楚是哪一首歌;這時如果你有一對大象般巨大的耳朵,就可以把旋律聽得清楚。音樂和光一樣都是一種訊號,章展誥需要大口徑的望遠鏡,進一步確認這顆小行星是不是真的轉得很快。 

加州理工學院帕洛馬瞬變工廠的執行地——帕洛馬天文台。圖/Wikipedia

當時他正在加州理工學院訪問,便與加州理工學院的合作者使用他們的 5 公尺口徑望遠鏡進行自旋週期確認,結果顯示它確實是一顆超快自旋小行星。這顆超快自旋小行星的發現,證實了 2002 年發現的第一顆超快自旋小行星並不孤單,超快自旋小行星是一個族群。 

提到那次經驗,章展誥心中除了喜悅還有震撼,原來美國一流名校是這樣做研究的!取得 5 公尺望遠鏡的使用時間就像是走到對街買杯奶茶一樣容易,資源如此豐富,做研究自然得心應手。

除了轉得快,與其他小行星有什麼不同?

因為超快自旋小行星的相關研究成果,在 2017 年 4 月舉行的「小行星、彗星、流星國際研討會」(Asteroids, Comets, Meteors 2017, ACM 2017)上,國際天文學會(IAU)宣布將編號 10679 的小行星命名為 Chankaochang——章展誥小行星。到 2020 年 3 月為止,已知的超快自旋小行星一共有 26 顆,其中的 23 顆是章展誥的團隊發現的。除了尋找更多超快自旋小行星,章展誥還進一步研究它們的組成和分佈,比較它們與其他小行星有什麼異同。

小行星距離我們那麼遠,天文學家要如何研究小行星的組成呢?假設建築工地裡有三種建材,分別是磚頭、水泥和大理石,如果它們放在手碰不到的距離,要如何分辨?你一定知道從顏色就可以分辨它們的材質,紅色是磚頭,灰色是水泥,白色是大理石。實際上天文學家也用類似的方法,他們用小行星的顏色來分辨它們的組成。章展誥的研究發現,這些超快自旋小行星的組成與一般的小行星並沒有不同。

小行星主要分佈在火星與木星的軌道之間,這些小行星分佈的區域稱為小行星帶。超快自旋小行星在小行星帶的分佈位置有什麼特別的地方嗎?它們比較靠近火星或木星?章展誥發現超快自旋小行星分佈的位置並不特別,與其他小行星分佈的位置很相似。

超快自旋小行星除了自旋得超快,它們的組成與分佈跟其他小行星並沒有什麼不同。至於為什麼它們可以轉得超快而不裂解,目前仍是未解之謎,期待未來章展誥能夠解開謎團,告訴我們答案。 

章展誥目前是中央大學天文所的助理研究學者。圖/章展誥提供

從星團到小行星 章展誥繞著天文轉

章展誥大學是念中央大學物理系,修過普通天文學後,覺得天文容易上手,後來進入天文所蔡文祥教授的研究室做暑期學生,開始他的天文研究之路。當時的時空背景,大多數的大學生畢業後都會選擇念碩士班,章展誥覺得天文比較親近,所以選擇報考天文所。考上中央大學天文所,繼續跟隨蔡文祥教授研究球狀星團。

碩士班畢業後,章展誥到成功大學物理系許瑞榮教授實驗室協助研究紅色精靈,紅色精靈是一種高空閃電現象,他參與的團隊很幸運地拍到紅色精靈,這是臺灣首次記錄這種特殊、罕見的現象。

離開成大後,章展誥曾經到科技業工作,後來覺得不同部門之間,對解決問題方式存在很大的差異,因此在一年後離開企業界,回到中央大學擔任高仲明教授的研究助理,工作是用大量的天文數據和影像建構虛擬天文台。處理大數據的經驗,讓他可以幫助學弟解決研究上的問題,這讓章展誥興起攻讀博士的念頭。於是在 2006 年,他進入中央大學天文所博士班就讀,研究銀河系;博士後一直到現在,則聚焦在小行星。

從球狀星團、紅色精靈、虛擬天文台、銀河系到小行星,章展誥跨足天文、太空多個研究領域,至於未來,且讓我們拭目以待!

科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。