Loading [MathJax]/extensions/tex2jax.js

6

0
0

文字

分享

6
0
0

質疑自己算不算科學家嗎?看看八歲小孩的論文找回初衷吧!

鄭國威 Portnoy_96
・2011/01/13 ・1775字 ・閱讀時間約 3 分鐘 ・SR值 457 ・五年級

科學家有時候也會陷入自我否定的狀態,尤其是當有人批評科學家三個字只不過是「有博士學位,相信演化論的人」的自稱,而且科學家還不知道該怎麼反駁時。Marc Cadotte是The Eeb &Flow 部落格的共筆部落客之一,他自己就在想「我除了是個擁有生態學跟演化生物學博士頭銜的人以外,還有沒有哪些東西讓我稱得上是一個科學家?

然而,他在Biology Letters上看見的這篇由25位8到10歲小童完成的研究論文,讓他心中迷霧盡散。這群小小學生設計了邏輯嚴整、方法巧妙的實驗,想要知道蜜蜂會不會從顏色跟空間模式來學習跟記憶覓食點。他們設計了一個大矩陣,裡頭有四個小矩陣,各由16根有機玻璃材質的小棒子(註)組成,每一根棒子都模擬為花。一開始,所有矩陣中的棒子都是白色的,上頭都沾有花蜜水,藉此訓練五隻蜜蜂習慣在這些棒子上覓食。

接著他們把蜜蜂關在盒子裡放進學校的冷藏庫,讓蜜蜂統統睡著,一隻一隻把熟睡中的蜜蜂標上顏色,再將蜜蜂放到溫暖的環境他們醒過來(研究中特別強調:沒有任何蜜蜂因此受傷)。接著就是訓練部份:學生把兩個小矩陣中白色的棒子換成外圈12根黃色,內圈4根藍色,另外兩個小矩陣則相反,外圈藍色,內圈黃色,交叉排列。訓練前兩天都只在內圈4根塗上花蜜水,後兩天還在外圈12根塗上鹽水,希望讓蜜蜂學習「當外圈是藍色時,內圈黃色的棒子上有花蜜;外圈是黃色時,內圈藍色的棒子上有花蜜。」

接著就是要檢驗蜜蜂是不是真的能學習這個模式,實驗分成三組,第一組是控制組,棒子矩陣排列不變,但是當然都不塗上花蜜水,然後放出蜜蜂,看他們會停在哪些棒子上,伸出他們長長的嘴。他們發現,蜜蜂幾乎都往小矩陣中間去,符合他們被訓練的模式,而其中有的還特別喜歡特定顏色。

-----廣告,請繼續往下閱讀-----

但這樣不能證明一切,接著第二組實驗組(一),他們要做的是將小矩陣中的4根藍色或黃色棒子都換成綠色,他們想知道蜜蜂是不是只學會要往小矩陣的中間跑才會有花蜜水吃。

他們假設,如果蜜蜂在訓練中學習到的覓食模式是「往小矩陣中間就有花蜜水」,那應該會跟第一次實驗一樣,蜜蜂停留在中間綠色棒子上的次數壓倒性勝出才對,但結果發現蜜蜂並沒有特別往中間聚集,只有30%左右的次數是停在綠色棒子上,接近整個大矩陣綠色棒子所佔的面積(25%),也證明了蜜蜂不只是透過空間來決定覓食處,顏色也有影響。

最後第三組實驗組(二),他們想知道蜜蜂是不是認為「每個矩陣中顏色最少的棒子上就是有花蜜水的」,所以他們把矩陣調整成下面這個樣子。要是蜜蜂要找矩陣中顏色最少的棒子來覓食的話,應該會往角落聚集。

實驗結果是,就整群蜜蜂而言,並沒有特別往角落進行覓食的跡象,但是其中兩隻蜜蜂B跟B/O特別偏愛黃色。

-----廣告,請繼續往下閱讀-----

小小研究者們做出了結論,他們發現蜜蜂可以被訓練學習複雜的規則,既能夠互相合作,又有自己的性格,雖然還是會犯些錯誤。而在野外覓食的時候,他們可以透過經驗累積的模式,幫助他們更快找到花蜜,就如同這個實驗中所證實的。

然而他們最可愛,也最有啟發性的結論是:

Before doing these experiments we did not really think a lot about bees and how they are as smart as us. We also did not think about the fact that without bees we would not survive, because bees keep the flowers going. So it is important to understand bees. We discovered how fun it was to train bees. This is also cool because you do not get to train bees everyday. We like bees. Science is cool and fun because you get to do stuff that no one has ever done before. (Bees—seem to—think!)

在我們開始這些實驗之前,我們真的不常關心蜜蜂,也不知道他們跟我們一樣聰明。我們也不關心要是沒了蜜蜂,沒有花,我們也沒辦法生存這個事實,所以了解蜜蜂真的很重要。我們發現訓練蜜蜂好好玩,這真的很酷,因為你不是每天都有機會訓練蜜蜂。我們喜歡蜜蜂,科學真酷、又好玩,因為你可以作一些過去沒有人作過的事情。

-----廣告,請繼續往下閱讀-----

Codotte看完孩子們的研究豁然開朗,他說,當個科學家可能意味著你有知識、受過訓練跟高超技能,但真正的核心,在於樂於研究、檢驗假設,並且發表其他科學家也接受的成果,「這些孩子是科學家,我也是」。

你呢?你認為自己算是科學家嗎?

延伸閱讀:加來道雄(Michio Kaku):「我們一出生就是科學家,直到十四歲」

註:原始論文裡頭用rods這個字,應該是棒子或竿子,不過看圖比較像是平面的

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
鄭國威 Portnoy_96
247 篇文章 ・ 1300 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
「科學」能有價值觀嗎?堅持「客觀」反而讓民眾失去信任?——《為何信任科學》
貓頭鷹出版社_96
・2024/05/26 ・3357字 ・閱讀時間約 6 分鐘

科學這門事業並非價值中立,個別科學家也不是。沒有任何人可以真正做到價值中立,當科學家這樣講自己,人們會覺得他們虛偽,因為那是不可能的。除非他們是白痴學者或超級天真,不然就是不誠實。然而誠實、開放和透明又被認為是科學研究的核心價值。科學家怎麼可能同時做到誠實,又說他們沒有自己的價值觀?如果科學家要堅守誠信,同時卻讓大眾誤解他們的角色(就算不是故意的),這會讓他們的事業出現根本的矛盾。

可能有人會反駁,科學家並不是說他們沒有自己的價值觀,只是不會允許這些價值觀影響到科學工作。這種論述不可能證明對或錯,但社會科學研究和一般常識都顯示這不太可能。這就把我們帶到下一個問題,不知為何長久以來都沒有人認真討論一件事,但它卻是許多美國人不信任科學的核心因素:要說科學是價值中立的,多少是在說它沒有價值,至少除了創造知識以外沒有其他價值,而這很容易就變成在說科學家沒有價值信念。當然不是這樣,但如果科學家不願意討論他們的價值觀,就會給人一種印象,認為他們的價值觀有問題,所以才需要遮遮掩掩,或認為他們根本就沒有價值信念。你會相信一個沒有價值信念的人嗎?

我在第二章提出了一個問題:忽視科學主張但最終發現它是對的,風險是什麼?相比之下,相信一個錯誤的科學主張,風險又是什麼?回答這個問題必須仰賴價值。我和康威合著的《販賣懷疑的人》提到,氣候科學所引起的爭辯,幾乎都是價值上的爭辯。很多有影響力的人物在一九八○和一九九○年代相信,政府干預市場的政治風險是如此之大,超越了氣候變遷的風險,因此他們懷疑、蔑視,甚至否認後者的科學證據。這些立場由自由主義智庫繼承,得到共和黨支持,演變成共和黨支持者很多都否認氣候變遷,只是有些積極、有些消極;然後再演變成很多質疑「大政府」的人都懷疑氣候變遷,包括商人、長者、福音派基督徒、住在美國鄉下的人。

即使氣候變遷的證據不斷累積,懷疑論者還是堅稱,就算氣候真的有在變遷,情況也不會太嚴重,或者不是「我們造成的」。因為如果事情真的很嚴重而且是我們造成的,那我們就應該採取行動,可能需要政府以某種方式管制。如此一來,否認氣候變遷逐漸變成美式生活的常態,先是否認證據,最終否認事實。這個問題非常嚴重,但是對於氣候變遷否認者秉持的價值,不能一網打盡說是錯的。

-----廣告,請繼續往下閱讀-----
共和黨支持者很多都否認氣候變遷。圖/giphy

我們可以討論大政府和小政府的優缺、市場管制不足或過度管制的風險,但任何這類討論都(至少在某種程度上)是從價值出發。如果要開誠布公討論這個話題,就必須討論我們的價值觀。不同的人面對同樣的風險,可能有不同的想法,不代表他們就是愚笨或腐敗。人為氣候變遷的科學證據很清楚,疫苗不會導致自閉症很清楚,使用牙線有益健康也很清楚。但價值觀導致許多人拒絕接受證據指出的事情。

回到剛才的問題:你會相信一個沒有價值信念的人嗎?答案當然是不會,這種人是反社會人格。你也不會相信那些擁抱你所厭惡的價值的人。但如果你認為,某個人的價值觀起碼部分與你相似,就算不盡相同,你可能就比較願意聽聽他的想法,接受他說法的一部分。因此,無論價值中立是否能讓一個主張在知識論上比較站得住腳,可以確定的是它在現實中沒有用,不能以此確保溝通、建立信任的連結

科學寫作的主流寫法不只試圖隱藏作者的價值觀,也把他們的人性一同抹煞了。價值觀隱藏、情緒不得伸張、避免使用形容詞,甚至連「我」這個字都無形中禁止了,即便論文只有單一作者也一樣。理想的科學論文寫得好像作者沒有價值觀或感覺,甚至好像作者根本不是人,這都是為了表現出客觀。

圖/envato

科學家可能覺得根本沒辦法讓否認氣候變遷和相信地球年紀是 6000 年的人相信他們。或許這是真的。我曾經公開表示對於要如何跟千禧世代交流感到非常絕望,他們之中有些人聽信末世論,認為世界就要毀滅了,幹麻還擔心氣候變遷?但當我陷入絕望,隔天幾位記者就告訴我怎樣才能透過基督教價值和教導打動這些人。他們建議我從價值觀下手,社會科學研究也支持這種想法。

-----廣告,請繼續往下閱讀-----

結論

科學家壓抑自己的價值觀,堅持科學是價值中立的,這是一條歧路。他們認為人們如果相信科學沒有價值觀,就會相信他們,但這是錯的。

墨頓顯然這樣想,但他可能是錯的,或許反過來才是對的。原因如下:

政治與社會觀念保守的基督徒、自由主義者、共和黨人拒絕相信演化論和人為氣候變遷,大部分分析都聚焦在科學家與這些人之間的價值衝突。但我相信,驅動大多數科學家的價值觀,還是和大多數美國人的價值觀有重疊之處,包括多數的保守派和宗教信徒。近來有一些科學家開始公開聲明他們的價值觀,我認為部分原因是,他們深信這些價值觀確實得到廣泛接納,可以作為信任連結的基礎。 我認為他們是對的。

我認識的大部分科學家都想要預防疾病、促進人類健康、透過創新和發現來強化經濟、保護美國與全世界美麗的大自然。前共和黨議員殷格利斯講得很有說服力,他談到他和海洋生物學家一同造訪大堡礁,他們肩並肩站著,欣賞珊瑚礁周邊生物撼人的美麗。殷格利斯了解到一件事:他看到「創造」,科學家看到「生物多樣性」,但他們實際上看到的、在意的、珍惜的,是同一件事。

-----廣告,請繼續往下閱讀-----

我好喜歡這個故事,因為多數人至少都在某方面珍愛自然。不同背景的美國人都曾造訪國家公園和森林,去健行、釣魚、露營、開車、攝影、漫遊、抱怨,雖然從事不同活動,但美景與體驗帶來了共同的喜悅。儘管如此,我們對人類與自然世界的關係,確實有不一樣的想法。有些人想要在冬日的黃石公園騎雪上摩托車,有些人想要安靜休養。幾乎所有美國人都說他們相信自由,然而我們對這個詞的理解卻嚴重分歧,也很難同意該把哪一類自由看得最重要。柏林有句名言:狼的自由可能代表羊的死亡。同意「自由」這個詞意義並不大。

宗教歷史學家普羅特勞指出,猶太人、天主教徒和新教教徒都相信十誡,但是版本差距之大,令人吃驚。例如天主教放棄了不可崇拜偶像,而猶太教與新教徒堅守此道。天主教因此少了一條戒律,只剩九條很奇怪,於是他們把最後一條一分為二,變成第九條是不可貪圖鄰人之妻,第十條是不可貪圖其他東西。儘管如此,美國人中超過 70% 都信奉這三個宗教,他們都還是認同不可殺人、偷竊、通姦或做偽證,也相信我們應該崇拜唯一真神、不可妄稱神的名、守安息日、孝敬父母。伊斯蘭教也同意這些,只是比這三個宗教更加強調慈善:課(zakat),也就是施捨,是五大支柱之一。不過,看看 zakat 這個字和希伯來文中的 tzedakah 多麼相似,tzedakah 代表慈善施予,是猶太生活的道德義務。慈善也是基督教的核心價值,虔誠的摩門教徒會繳納什一奉獻。

在很多政治議題上我們意見相左,但我們的核心價值大部分都重疊。釐清這些我們都同意的部分,並解釋它們和科學研究的關聯,我們就有機會克服盛行的懷疑論與對科學的不信任,尤其是因價值受到衝擊而產生的不信任。

We have been authorized by Princeton University Press to use this conten. 該內容由普林斯頓大學出版社授權使用

——本文摘自《為何信任科學:科學的歷史、哲學、政治與社會學觀點》,2024 年 04 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
1

文字

分享

0
1
1
科學主張的信任基礎是什麼?憑什麼讓我相信它?——《為何信任科學》
貓頭鷹出版社_96
・2024/05/25 ・3854字 ・閱讀時間約 8 分鐘

科學,一種帕斯卡賭注

如果一個科學主張會對社會、政治或個人造成影響,那在衡量它時,就必須多考慮一個問題:如果錯了會怎樣?接受一個主張最後卻發現它是錯的,有什麼風險?拒絕一個主張而最後發現它是對的,又如何呢?

如果知道服用避孕藥的風險,一位健康女性就可以在憂鬱出現時即時停藥。避孕藥引發的憂鬱通常很快就會消失,對許多女性來說這樣的風險還算輕微,值得一試。同樣地,牙線很便宜,使用牙線每天只需要幾分鐘,如果最終發現沒什麼用處也不會有太大損失。但某些議題就沒那麼簡單了。

想想人為氣候變遷,儘管相關科學研究已經持續了五十年,累積了上萬篇同儕審查的科學論文、數百篇政府及非政府組織的報告,許多美國人仍懷疑氣候變遷的真實性及人類在其中扮演的角色。總統、國會議員、企業領袖、《華爾街日報》的社論都曾表示懷疑,拒絕相信好幾個世紀以來充分發展的物理理論,以及海平面上升和頻繁極端氣候事件等經驗證據。另外有些人則認為,儘管人為氣候變遷真的有發生,但不會造成太大影響,甚至是件好事。

做為一位科學史學者,我知道能量有限理論、優生學、激素避孕藥的歷史,也知道要判斷使用牙線是否有益十分困難,最重要的是我知道地質學家在衡量大陸漂移理論時受到了政治理念影響。我從未預設我們相信科學永遠合理,或通常是合理的,我一直認為這個問題很棒:科學主張的基礎為何?我們應該相信科學家嗎?

-----廣告,請繼續往下閱讀-----

信任科學非常重要,但科學家不能期待大眾單憑信任就接受他們的主張。科學家必須解釋他們如何做成這些主張,並承認他們有可能因為忽略或蔑視某些證據而犯錯。如果有人合理指出某些證據被漠視或不合比例的強調,無論這個人是科學家、業餘專家、記者還是飽學的公民,都該考慮他的想法。科學家必須保持開放,明白他們有可能犯錯或忽略某些重要的事情。重點在於,無論科學家有多麼聰明正直,我們相信的都不是科學家,而是相信科學做為一種社會過程,能夠嚴謹地檢驗科學主張。

圖/envato

有些科學結論已經發展完整,不再有人提出合理的懷疑;有些理論則是早就被推翻了。上述論點並非在說科學家應該繼續投入時間與精力,反覆證明或推翻這些結論。如同孔恩在超過半世紀前所討論的,如果說科學可以說是一種進步,那是因為科學家知道怎樣達成共識、往下一步邁進。針對大陸漂移理論的辯論,是在新一代科學家找到了一系列更切中要害的證據後才重新開啟的,這可說是該案例中最突出的一個面向。

我們可以用帕斯卡的賭注來說明這個問題。無論一項科學知識發展得有多完整,無論專家共識有多強大,永遠還是會有不確定之處。因此每當有人挑戰科學知識(不管是出於什麼原因),我們都可以先學帕斯卡這樣問:如果這項科學主張最後證明是對的,忽視它會有什麼風險?相較之下,因應這項主張而行動,但最後發現它是錯的,代價又是什麼? 不用牙線的風險真實存在,但不至於太嚴重;對氣候變遷的科學證據視而不見,代價則太高昂了。

不可諱言,提倡優生學社會政策的人也認為不施行這些政策會帶來極大的風險。當然那只是他們對科學證據的解讀,而如我們所見,這些證據該如何解釋,並未有共識達成。這裡我們又要回頭強調共識。如果可以證明相關領域專家並未達成共識,那公共政策的基礎顯然十分薄弱。這也是為什麼菸草公司長久以來,一直嘗試宣稱科學認為菸草會帶來危害這件事其實沒有那麼確定。如果真的是這樣,他們說菸草管制過於倉促就是對的。同樣地,如果人為氣候變遷還沒達成科學共識,石化產業和自由主義智庫要求更多研究,就是正確的。因此共識研究關係重大,知道共識存在無法讓我們知道該如何面對氣候變遷,但可以告訴我們問題確實存在。

-----廣告,請繼續往下閱讀-----

如果確定相關領域的專家已達成共識,下一步呢?我們可以充滿信心地接受他們的結論,以此當作決策依據嗎?我的答案是有條件的肯定。可以,條件是社群有理想運作。這個條件很重要,如同溫恩所說,如果科學想要得到尊重與信賴,那麼「在組織型態、管理方式、社會關係等方面擁有優良的制度,就不只是為了讓科學進入大眾生活而作非必要的渲染,而是批判性社會文化評估的必備元素。」

科學史顯示社群不見得能如理想般達到開放、多元、確實執行轉化型質問,而且通常都做不到(不過沒達成這些理想,影響也不一定會很深刻,有時甚至難以察覺)。歷史學家史塔克指出,美國國家生命倫理委員會建議在審查以人類為實驗對象的研究時,委員會至少要有四分之一成員不隸屬執行該研究的機構,但這個目標很少達成。

我們要如何知道科學社群夠不夠多元、有沒有做到自我批判、讓另類意見有機會發聲?尤其是研究進行初期,有潛力的方法不該太早被否定。我們該如何判斷制度好不好?這裡沒有統一標準。很多科學家對大陸漂移的想法錯了,這不代表現在另一群科學家對氣候變遷的想法也錯了,他們可能對可能錯,我們不能預設立場。

除了檢查高素質的專家社群有沒有達成共識,我們也可以問:

-----廣告,請繼續往下閱讀-----

社群中的科學家能接受不同觀點嗎?社群成員是否能代表廣泛的觀點,有不同的想法、理論取向、方法學偏好和個人價值?

是否使用不同的方法和多樣的證據?

不同的意見有沒有機會發聲、被充分考慮和看重?

社群是否對新資訊開放?能否自我批判?

在年齡、性別、種族、族群、性向、國家等面向上,社群的組成是否多元?

最後一點需要進一步解釋,科學訓練的目的是要限制個人偏見沒錯,但所有已知證據都顯示我們沒做到這點,而且可能真的很難。個人偏見很難避免,但可以透過多樣化來校正。不過,真的需要在人口組成上多元,才能讓觀點多元嗎?

關於這個問題最好的答案,是人口多元很接近觀點多元,甚至可以說是能夠促成該目標的手段。一群白人、中年、異性戀男性可能對許多議題看法分歧,但他們也會有盲點,例如在性別或性向上。在團隊中加入女性和酷兒是一個辦法,讓更多本來可能錯失的觀點被納入考量。

-----廣告,請繼續往下閱讀-----
在團隊中加入女性和酷兒能讓更多本來可能錯失的觀點被納入考量。圖/envato

這是觀點知識論的基本論點,主要由哈定提出(見第一章)。我們的觀點很大程度取決於生活經驗,比起有男有女的社群,一個全由男性(在觀點知識論上則是全由女性)組成的社群,經驗可能比較狹隘,觀點也可能因此比較狹隘。商業世界有證據支持這點,針對職場性別多樣性的研究顯示,女性加入領導階層有助於公司獲利,但只限於一定比例:60%。如果公司領導階層全部或大部分是女性,這種「多元紅利」就會開始降低。這也的確符合以上論點。

前面提到的問題其實並不容易做到,但如果任何一點沒有做到,通常很容易就會被發現。更常見到的是社群中的某些人性格傲慢、心胸狹窄、自我膨脹(這些實在太常出現了!),但社會學觀點的知識論認為個人的影響不大,重要的是團隊整體足夠多元,公開討論的管道暢通,新證據和新想法有機會傳播。

哲學家道格拉斯論證過,當科學結論帶來的影響不在知識層面,而是關係到道德、倫理、政治或經濟,就無法避免價值觀在不知不覺中影響我們對證據的判斷。(例如自由派可能會比較快接受氣候變遷的科學證據,因為這代表政府可能要干預市場運作,而他們對這點接受度較高。)

因此,一個議題影響社會愈深,研究它的社群就更必須公開且多元。 不過有時候某些議題看似單純、只是知識問題,實際上卻不是。科學家可能會說他們純粹在討論問題的知識面,但實際上不是。這表示無論是什麼議題,科學社群都需要留意多元和開放程度,對新想法保持開放,尤其是得到實證證據支持的想法,或嶄新的理論概念。

-----廣告,請繼續往下閱讀-----

例如可以在決定經費補助對象或審查論文時,多加考慮新穎的想法。包容新穎想法最後發現它錯了,應該還是好過因為批判而錯過好的想法。很多科學家非常強調在面對知識時應該表現出嚴厲的態度,實際上還可能流於粗暴,這可能在無意間造成同行不願多言,特別是年輕、害羞或缺乏經驗的科學家。嚴厲很重要沒錯,但保持開放可能更重要。

We have been authorized by Princeton University Press to use this conten. 該內容由普林斯頓大學出版社授權使用

——本文摘自《為何信任科學:科學的歷史、哲學、政治與社會學觀點》,2024 年 04 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。