Voigt D; Gorb S. 2010. Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc. R. Soc. B. 277(1683): 895-903.
Viegas J. 2009. Natural super glue found on asparagus spears. Discovery News [Internet],
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !
玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。
這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。
Ex Machina(人造意識,也譯為機械姬;據說拉丁文片名本意是「來自機器」)。片中的女機器人在主人的設計下,已經具有足以通過「圖林測試」(Turing Test)的智能,但是她還進一步發展出主人所不知的自主意識,最終為了自由而殺死把機器人當作娛樂工具的主人。
Blade Runner(銀翼殺手)。此片的機器人是仿生人,在外貌、語言以及行動上,與人類沒有區別,和 Ex Machina 中的機器人相比,好似更加先進,然而其機器人本質還是可以被一項對於情緒反應的測試揭發(有如測謊器的功能),片中機器人當然也被安排會為了避免「被退休」而殺人。
I, Robot(機械公敵)。片中機器人在外貌上,與人類有明顯區分,它們被製造來服務人類,有遠超越人類的體能,因此必須遵循艾西莫夫「機器人三定律」(第一定律:機器人不得傷害人類,或坐視人類受到傷害;第二定律:機器人必須服從人類命令,除非命令抵觸第一定律;第三定律:機器人在不違背前兩定律的情況下,必須保護自己),此片也一樣安排讓機器人產生某種程度的自主意識(主角機器人甚至會做夢),以及與人類的衝突。
觀鷹久了,我發現自己能夠預測老鷹的企圖,或者說可以領會老鷹在「想」些什麼、在動些什麼「心思」。老鷹儘管沒有語言,但是能夠發聲「呼喚」、「警告」、「恐嚇」其他老鷹或其他生物。我一點也不懷疑白頭鷹具有某種程度的心智。(知名哲學家奈格爾(Thomas Nagel)在 1974 年發表了一篇文章「身為蝙蝠會有什麼樣的感受?」(What is it like to be a bat?),他此文的主張就是,不是蝙蝠的我們永遠不會知道蝙蝠的主觀感受是什麼。我自以為多少了解白頭鷹的心思,當然是不認同奈格爾的主張可以推廣至白頭鷹。)為什麼白頭鷹能夠具有心智,而機器人沒有?這就是當代心智研究的基本問題。我猜測關鍵在於演化與成長歷史:白頭鷹是經過長期自然演化而產生的物種,從出生至獨立成熟也有個成長過程,而機器人卻不是如此。