Zewail表示,此技術最大的特點在於,它不但維持了電子顯微鏡的超高三維空間解析力,同時可以具有超快的光學成像能力。也因此他將這個新的電子顯微技術稱為:四維度電子顯微鏡。 其實早在2年前,Zewail的研究小組就已經利用此四維度電子顯微技術進行超快電子繞射實驗,發現不同密度的氧化鋅奈米線陣列,在光激發下所產生的異向結構膨脹不但大小不同,膨脹的時間長短也不相同(1)。他們在去年更進一步應用此技術所發展的光致近場電子顯微鏡(photo-induced near-field electron microscopy, PINEM),成功地在近飛秒尺度下觀察奈米碳管和銀奈米線的近場電場分佈變化(2)。今年四月,他們把目標轉向直徑500奈米同時帶有約50奈米外殼層的蛋白質囊泡,利用PINEM技術,可以透過改變特定參數例如雷射的極化以及囊泡的方位,進而選擇囊泡殼層中欲成像的準確位置(3)。如此一來,將不再需要做標定或是特殊的樣品製備技術來觀察細胞中的微小粒子,如核酸醣小體。六月,Zewail的研究小組發表了四維電子斷層攝影術(4D electron tomography),對環形奈米碳管進行兩種不同振動模式的動態觀察(4),共振頻率高達30百萬赫茲。
Flannigan DJ, Barwick B, & Zewail AH (2010) Biological imaging with 4D ultrafast electron microscopy. Proceedings of the National Academy of Sciences 107:9933-9937.
其中一個是 X 光晶體學,也就是讓許多蛋白質分子一同排列成整齊的晶體,接著將 X 光打進去,用繞射圖案進行分析。從 1950 年代以來,科學家便常常使用這種技術來探索分子結構。DNA 的雙股螺旋結構便是透過 X 光晶體學被發現。
圖 1/著名的 51 號照片 (Photograph 51)。葛斯林 (Raymond Gosling) 和富蘭克林 (Rosalind Franklin) 拍到了DNA晶體所繞射出的X型圖樣,帶領了華生與克里克等人提出了雙股螺旋的模型。圖/Raymond Gosling, King’s College London
不過這種方法有其根本上的限制。X 光晶體繞射後的強度很弱,必須藉由晶體內多個重複且整齊的晶格,進行同步繞射來增強訊號,因此沒辦法處理太大的蛋白質分子(單位體積內重複晶格太少),或是結構複雜的蛋白質(像是核糖體是由兩個次單元組成的),而且因為 X 光晶體學仰賴的是晶體結構的繞射,那些無法好好結晶的蛋白質,便不在它的防守範圍內,而細胞中許多的蛋白質都很難形成整齊的晶體。