0

0
0

文字

分享

0
0
0

人工滑雪場內的定位系統

科景_96
・2011/02/10 ・680字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

Original publish date:Mar 12, 2009

編輯 HCC 報導

 

德國工程師利用RFID(無線射頻識別技術)建構了人工滑雪場內的運動員滑雪板位置與路徑追蹤系統,定位精度到公分等級,可以協助教練檢視運動員的滑雪技術。

區域定位系統的應用日廣,或因為建築物的遮蔽,無法順利接收衛星訊號,須進行室內人員或車輛定位;或利用RFID(無線射頻識別技術)追蹤物品位置,進行物流管理。德國工程師另有巧思,把區域定位系統應用到滑雪運動員的訓練上。

-----廣告,請繼續往下閱讀-----

工程師把答應器(transponders)包括無線電發射器與接收器應用在滑雪場上,將無線電發射器固定在運動員的滑雪板上,利用滑雪板前後端的小型天線以每秒千次的頻率傳送無線電波。於滑雪場斜坡定距佈置的接收站(receiving stations),擷取無線電波訊號,計算天線發射訊號到接收站的時間,精確的對滑雪板上的天線進行定位。

電腦每千分之一秒計算滑雪板位置一次,隨於螢幕上顯示滑雪板的移動路徑,教練就能檢查滑雪運動員的兩支滑雪板是否保持平行,或能做個標準的回轉動作。

工程技術的跨領域應用端視工程師的豐富知識與巧思。

參考來源:

-----廣告,請繼續往下閱讀-----

本文版權聲明與轉載授權資訊:

 

 

文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
0

文字

分享

0
4
0
內建超強GPS!研究發現狗狗靠南北短跑定位,找出最佳回家路線
何如
・2020/08/17 ・2542字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

眾所周知,狗狗有著一副靈敏的好鼻子,能夠感知周遭環境變化,然而不僅如此,最近更有研究指出,牠們可能還具有另一項隱藏能力——自動導航功能。這項功能就像狗體內擁有能感應磁場的羅盤,可讓牠們利用地球磁場推算陌生地形上的捷徑。

新研究發現,狗從陌生地折返回原點的方式有兩大類:一是隨著氣味依循原路回去的「原路折返」,二是從全新的路跑回來的「偵查折返」,其中有些採用偵查折返的狗會在回程時出現「沿著南北軸短跑」的現象,出現這種行為的狗,更有機會以最短的路徑回到牠們的主人身邊。

圖/Pixabay

磁感悄悄出現?曾經發現狗會「定位」

「(導航能力)這是第一次在狗身上發現」,研究海龜磁感與導航的生物學家凱瑟琳.羅曼 (Catherine Lohmann)註1 如此說道。

她提到,跟鳥類等遷徙動物比起來,對於狗身上導航能力的研究其實相對少得多。英國斑戈大學註2研究鳥類導航的生物學家理查.荷蘭 (Richard Holland) 則附和道:「這是洞察狗如何建構牠們對於整個空間的畫面的機會。」

-----廣告,請繼續往下閱讀-----

不過關於狗、其他動物甚至是人類「或許能夠感知地球磁場」這樣的情形,其實早已有過一些線索。2013年,已經研究磁接收 (magnetic reception) 30年的捷克學者海尼克.布爾達 (Hynek Burda)註3 和他的同事就表示,狗在排尿和排便時會傾向將自己定為南北向,而同時,因為這樣的行為與標記辨認領地有關,所以布爾達將這種定位校準解釋為「能夠協助狗釐清現在的位置與周遭的相對關係」。

然而,這種穩定不變的校準(白話文:知道東西南北),跟導航能力其實是兩回事。

隨意跑開後,狗竟然能從一條完全陌生的路折返?

在新的研究當中,布爾達的學生卡提捷娜.班尼迪克托瓦 (Kateřina Benediktová) 先將攝影機和 GPS 追蹤器放在4隻狗身上,然後再帶牠們到森林裡,接著讓狗四散而去,去追尋平均約 400 公尺外的動物氣息。

有趣的是,GPS 追蹤器顯示狗在回程路上(跑回向牠們的主人)出現兩種行為:一是「原路折返 (dubbed tracking),可能就是隨著氣味以沿著牠來時的路程回去;另一則是「偵察折返 (scouting),也就是從一條全新的路跑回來。

-----廣告,請繼續往下閱讀-----

圖/eLife

當卡提捷娜將獲得的實驗結果資料給布爾達看時,布爾達發現了一個奇怪的特性:在偵察折返的途中,狗會突然停下然後先向著南北軸跑個 20 公尺左右,才再又開始往回跑。那種短暫的 20 公尺小跑有點像是要校準磁場方向的模樣,但卡提捷娜還沒有充足的資料可以肯定這樣的推論。

於是他們擴展了這項研究計畫,幾乎人人都有養一隻獵犬的狩獵管理與野生動物學系註4的同事也投入研究,3年來透過27 隻流浪狗進行數百次實驗。

在進入森林實驗時,研究團隊會試著避免給予狗其他能夠辨識方向的線索。只要情況允許,狗都會被帶到從沒去過的森林裡的一處,如此一來牠便不能依靠熟悉的地標來找路。同時主人會在牠開始漫步時就躲起來,以免狗是藉由看見主人而跑回來。另外,由於狗跑回來時,風向很少是從主人吹向狗的,所以氣味也不太會造成影響。

研究人員仔細看了 223 例的偵查折返狀況,發現狗會在回程時平均漫步約 1.1 公里的距離,而這當中有 170 次出現了「狗先停下,再掉頭沿著南北軸跑 20 公尺」的情形。同時,研究者們也指出,出現這種行為的狗,更有機會以最短的路徑回到牠們的主人身邊。「我真的對這樣的實驗結果感到蠻震撼的」羅曼如此說道。

-----廣告,請繼續往下閱讀-----

圖/eLife

內建羅盤判斷最短回家距離?!其實不太意外

布爾達認為狗之所以會沿著南北軸跑是為了釐清牠們的方向,「這是最合理的解釋」他說。

羅曼則表示,這個行為的意義在於狗可能能夠記得牠們之前的移動路程,然後再藉由參考體內的磁場羅盤,來釐清回家的最短路徑

之後布爾達和卡提捷娜也開始嘗試另一種實驗方法,他們打算在狗的項圈中放入磁鐵,干擾磁場,然後觀察這樣是否會妨礙狗狗辨識方向的能力。這樣的想法與 1980 年曾經發表在《科學》期刊上的一篇爭議性實驗類似,當時的實驗是針對人類,研究者將磁鐵放入蒙眼受測者的眼罩中,實驗結果發現磁鐵似乎會擾亂人類直覺的方向感1

-----廣告,請繼續往下閱讀-----

不過羅蘭大學註5專攻狗隻行為的亞當.米克洛希 (Adam Miklósi) 則認為,要設計磁感的實驗其實是相當繁複的,因為很難排除其他感官,讓一隻動物完全只依靠一種感知來做出行為。

「這樣操作的難處在於為了要百分之百證明磁感,或是任何一種感知,你必須排除所有其他的感知。」

而米克洛希亦說道,其實「狗能夠利用磁場來辨識方向」並不是太令人吃驚的事,因為這似乎是一種古老的能力,而且可能出現在任何會橫越大片土地的哺乳動物身上。羅曼也贊同道:「你會期望動物在狩獵之後能夠藉這種方式回家,顯然能在狗身上看到應該滿合理的。

註解: 

  1. 時任北卡羅萊納大學 (The University of North Carolina at Chapel Hill) 生物系的助理教授。
  2. Bangor University。
  3. 為布拉格捷克生命科學大學 (Czech University of Life Sciences Prague) 的感官生態學家 。
  4. The department of game management and wildlife biology, Czech University of Life Sciences Prague。
  5. Eötvös Loránd University。

參考資料:

  1. Baker, R. R. (1980). Goal orientation by blindfolded humans after long-distance displacement: Possible involvement of a magnetic sense. Science210(4469), 555-557.

本文主要編譯自:Dogs may use Earth’s magnetic field to take shortcuts

何如
12 篇文章 ・ 1 位粉絲
「因為人因思想而獨特,但不說出來就什麼都不是。」 —為自己的冗言話多辯解的小菜鳥。

0

0
0

文字

分享

0
0
0
想成為狩獵高手?學學狐狸來利用磁場吧!──《變身野獸》
PanSci_96
・2017/08/26 ・2744字 ・閱讀時間約 5 分鐘 ・SR值 458 ・五年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛看書】天天都覺得心好累、人生好難?那就讓我們放棄當人,跟著搞笑諾貝爾生物獎得主一起《變身野獸》吧!作者為了對動物的日常生活感同身受,不惜親身迎接各種挑戰,吃貓罐頭、用牙齒捕魚、隨地排泄(?)如果你想擁有「不當人的勇氣」,絕不可錯過這份獨一無二的動物生活札記!

打獵也要很科學,用基本三角征服田鼠

時光旅行不只存在詩歌裡,狐狸會利用時光旅行狩獵。如果田鼠從狐狸身體中線任一側的不同角度發出吱吱聲,聲波抵達耳膜的時間點和強度就會有所差異。

一點基本三角學、豐富的經驗加上超多次撲空,狐狸的大腦就會一點一滴慢慢修正。雖然難度比較高(演化已經利用純音[pure-toned]獵物的物種表明這一點),但是狐狸也能找出連續純音的低吟來源:聲波的不同部位會在特定時間點撞進左右耳,如果波鋒震動右耳,波谷就會震動左耳,只要利用中間的差異就能找出聲音來源。

不過這個方法並非萬能。如果狐狸的頭靜止不動,聲波的定位就會從一個點變成美麗的曲面,從聲波來源一路延展到狐狸的頭部。狐狸沒辦法不斷跳躍,試圖從平面上無限個點找出獵物的位置。所以牠們換成兩種更聰明的方法。

狐狸利用聲波定位獵物的位置。圖/Holyrood Magazine

-----廣告,請繼續往下閱讀-----

掌握地球磁場,完美出擊不是問題

首先,狐狸會先動動頭或是耳朵。聲音來源和狐狸之間的曲面會變動,但是來源本身是靜止的。只要比對前後兩種曲面,狐狸就可以縮小可能範圍。轉幾次耳朵、搖幾回頭,狐狸就有足夠自信跳出那一步。不過,牠們還有另一種驚人的細微修正法。

為了了解這個方法有多驚人,建議你先去附近最髒亂的公園觀察正在排便的狗。如果天氣晴朗,牠們喜歡把身體對準南北向排便,那時候地球的磁場很穩定。但是磁場並不總是平靜的:當熔岩核心翻攪,地球表面就會捲起暴風和颮風。不過,只要牛鬼蛇神不作亂,狗的腸胃就會緊緊拴在世界的中心。

目前還不知道狐狸是否也受地球磁場影響,但是答案很可能是肯定的。狐狸絕對有順著地球磁場運轉。牠們很常向著東北方朝小型哺乳類撲去,而且這種方向的成功率更高。東北向攻擊的成功機率是 73%,西南向(跟東北向差 180°)是 60%,其他方向則只有 18%。

這種行為(目前僅知狐狸有此行為)是利用磁場計算攻擊距離,而不是位置或方向。距離比起其他兩者重要。狐狸的棲息地有各種因素會干擾距離計算。例如氣溫和濕度會改變聲波的速度,使得三角學計算出現誤差。聲波也會在草莖之間迂迴蛇行,在枝枒之間彈跳,一會兒巧妙鑽地,一會兒乘風嬉戲。田鼠常走的路徑幾乎長不出青草,沒有窸窣聲替狐狸通風報信。就算有草,徐風也會替田鼠遮掩行蹤。如果距離掌握不佳,狐狸可能再無機會重振旗鼓,發動攻擊。

-----廣告,請繼續往下閱讀-----

地球磁場影響了狐狸的狩獵行為。圖/phys.org

所以狐狸習慣對著磁場的固定角度(偏離北邊 20° 最佳)跳躍,牠們很熟悉這個角度發出的聲音。磁力線和聲線交會之處,獵物就在那裡。還記得英國空軍精準投下彈跳炸彈,轟炸德國魯爾水壩(Ruhr dams)的事嗎?當兩道聚光燈在水面交會,飛行員就曉得他們來到正確的距離,是時候該按下投放鈕。狐狸的狩獵也是同樣道理,只不過牠們的聚光燈是聲波和磁場,炸藥則是爆發的延伸腿筋以及其他約一百條充滿血液、淋巴和飢餓的肌肉纖維。

用磁場跟地球來場親密接觸吧!

真實感受到地球方位是什麼感覺?我也會向狐狸一樣轉頭試圖對準聲音來源,但是假如能靠體液判斷西北方位呢?那表示我的每一步從此都有憑有據,我將和世界萬物建立起緊密聯繫。以前我只是挑個地點製造各種髒亂,如今我將是真正的地球居民。

有一次,我在酒吧聽到幾位老婦抱怨世道衰微。當然,問題都出在年輕人身上,現在的年輕人跟以前不同了。換個有趣的角度,別把她們想成閒閒沒事做、淫蕩、不懂尊敬或爛醉的低下階層老嫗(就算是實情),她們只是對地球磁場過於敏感罷了。

-----廣告,請繼續往下閱讀-----

「妳知道嗎,那些傢伙說教會什麼的全都沿著磁力線連成一條,一路連到古老山丘之類的。」

「不會吧!」

「是真的。妳聽我說,他們說全國到處都是磁力的線,古代人知道這回事,所以把房子都蓋在線上。」

「才怪!」

「是真的啦,說不定我現在就坐在線上呢。屁股好像有點麻麻的。」

對話就這樣繼續下去:屁股麻、胸部麻,那條難看的長褲也跟著帶電了;從貝尼多爾姆(Benidorm)買來的二手壁爐找人看過風水了。老婦徹夜咯咯笑,我則點了一瓶原本以為不需要的啤酒試圖麻痺自己,埋首於《綠斗篷》(Greenmantle)中。

被老婦嫌棄的孫子說得對。隨便找一隻狐狸、叢林居民、正在半蹲撇條的狗,或是現代文明之前的任一人,他們都會點頭稱是。除了埋葬和直接踩進土裡之外,是磁力讓人類定錨在地球上。我們是吸在冰箱上的字母磁鐵,要拼出有條理的單字,唯一方法就是待在原地不動。如果像晚期舊石器時代那樣不帶磁性,人類就會盲目失根,不曉得身在何處,無法與土地親密相處,更不明白自己是誰,又為何出現在這裡。

是磁力讓人類定錨在地球上。圖/Public Domain, wikimedia commons

至少在滴到啤酒的筆記本上,我如此自以為是又幼稚地寫下這段話。我的磁力並不比老婦強。我的祖先和老婦的祖先,都在幾千年前砍斷自己的雙腿,挖出雙眼。但至少我很清楚,失去雙腿雙眼的人類確實弱化了。

-----廣告,請繼續往下閱讀-----

也許是我誇大其詞。狐狸對準磁北極二十度出擊,其實只是像乒乓球選手轉動手腕,以求擊出角度最大的上旋球。但無論如何,這個角度絕對是刻意對準的。於是斟酌之後,我認為自己並沒有誇大,因為世界級乒乓球選手和球桌的關係是如此奧妙。對我來說,那張球桌僅僅是一塊木材;對選手而言,那是展現奇蹟的舞台,也是繡出絕無僅有美景的刺繡架,這一切都是因為選手和球桌建立起關係。

所以說,沒有磁力的我,只能把這世界看成幾片木材,而不是國際桌球錦標賽的專用球桌。反觀狐狸,可是不分晝夜打著乒乓呢。


 

 

 

 

本文摘自《變身野獸:不當人類的生存練習》行人文化驗室出版。