由於在材料合成技術上的突破﹐透明電子元件(transparent electronics) 的開發已逐漸受到科學家們的重視。到目前為止﹐已經被使用且證實可製成元件的材料有CuAlO2 ﹑ZnO ﹑SnO2 ﹑以及In2O3:Sn。本文所要介紹的﹐是惠普(Hewlett-Packard) 的工程師R. L. Hoffman與奧瑞崗州立大學的科學家們合作﹐使用ZnO作為透明導電通路(conducting channel)所製成的薄膜電晶體。
R. L. Hoffman等人首先在玻璃基板上﹐以濺鍍的方式鍍上一層厚200nm的ITO(indium tin oxide﹐一種透明導體) 作為電極。然後以atomic layer deposition的方式﹐鍍上一層厚220nm的ATO(為AlO3與TiO2所組成的超晶格結構﹐為絕緣體) 作為分隔導電通路與電極之間的絕緣體。在 ATO之上﹐再以離子束濺鍍的方式鍍上作為導電通路的ZnO﹐以及作為源極與閘極電極的ITO。為了提昇ZnO的電阻係數﹐在濺鍍之後還須在純氧中經過攝氏600-800度的快速退火(RTA﹐rapid thermal anneal) 。而源極與閘極的ITO﹐也須在純氧中經過攝氏300度的RTA﹐以增加其透明度。
為了測驗這薄膜電晶體整體的透明度﹐R. L. Hoffman等人作了光穿透的實驗。在所得到的頻譜上﹐他們發現可見光波長範圍內的電磁波﹐對於元件整體的穿透率達75%。與在單一玻璃基板上所測得的92%穿透率來比較﹐他們得出元件對這些波長的電磁波﹐其吸收率約為17%。
R. L. Hoffman等人聲稱﹐他們所製成的薄膜電晶體﹐有製程簡單﹑成本低(使用玻璃基板)等優點。而在元件設計上﹐還有許多可以改進的空間。例如可以增加導電通路的寬度-長度比例﹐以提高通路中的電流。此外﹐由於元件中寄生電容(parasitic capacitance)的限制﹐上述的特性均是在直流(dc)條件下所測量的。至於元件的頻率響應(交流特性) ﹐仍有待努力。基於所得的數據﹐他們樂觀地表示﹐經過適當的改進﹐以ZnO製成的透明薄膜電晶體﹐或許可以在應用在主動式陣列液晶顯示器(AMLCD, active-matrix liquid-crystal display)中﹐作為單一像素的驅動元件。
原始論文:
-----廣告,請繼續往下閱讀-----
R. L. Hoffman et al., ZnO-based transparent thin-film transistors, Applied Physics Letters82, 733 (2003)
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。