Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

保護智慧手機安全與隱私的軟體與建議 — 如何避免被竊聽監聽?

洪朝貴
・2013/11/06 ・2325字 ・閱讀時間約 4 分鐘 ・SR值 472 ・五年級

-----廣告,請繼續往下閱讀-----

mobile-privacy最近談了很多 「國家機器與資通大廠透過後門與攻擊等等方式監聽大眾」 的問題。 一定有讀者在心裡問: 如果 美國 NSA 的監聽無所不在, 如果連臺灣政府也在監聽 line、 FB、 WhatsApp、 WeChat、 … [12] 如果連 微軟蘋果 的產品都已證實暗藏竊聽後門, 那到底還有沒有我可以信任的私密通訊工具與方式呢? 有什麼方式可以反監聽呢? 本文針對 android 手機提供一些保護隱私與資訊安全的線頭 — 資訊太多了, 我自己也還沒空消化。 以下連結只是個起點。

首先, 沒有絕對安全的工具。 我個人對於電腦安全的信心遠高於手機安全, 因為我的筆電與桌機用的是 linux 作業系統。 但是 T 客邦摘譯 ArsTechnica 報導: 一位知名的資安專家 Dragos Ruiu 從三年前開始他的所有電腦被一隻超黏的病毒纏身。 這隻病毒存在於 BIOS 的層次, 所以不只是 Windows, 就連 Mac OS X、 Linux、 甚至是 已證實極安全的 OpenBSD 全都都難以倖免。 (還會靠麥克風隔空傳染, 詭異到有點難以置信…)

其次, 容我再次強調: 原始碼公開讓大眾檢驗, 是資訊安全的先決條件。 重點不是你我能否看得懂。 重點是作者敢公開原始碼讓全世界的專家檢驗, 這樣的軟體比較不容易暗藏後門。 如果你無法接受小格對於開放原始碼的 (其實還不夠) 堅持, 那就可以直接省略本文了。 等一下, 這個連結對於 「防範 (你手機上安裝、 沒有原始碼的) apps 侵犯隱私」 可能會有幫助: Android 4.3 提供更細緻的隱私控制。 (permission manager 中文教學

如果我有足夠的時間玩耍, 我不會選擇 android 手機, 而會先研究一下哪裡可以買到 開放原始碼的手機硬體, 再比較一下 手機版 Debian手機版 ubuntu手機版 firefox。 也會參考一下 開放原始碼手機清單

-----廣告,請繼續往下閱讀-----

但是因為沒空玩, 而且遷就目前市場的現實, 看來只能選擇 android 手機比較實際。 Android 的核心本身 (AOSP) 確實是開放原始碼; 但上面有許多內建的 apps 並不是。 而且, google 正在走向封閉。 此外, 美國 NSA 貪得無厭 貪窺無厭, 透過稜鏡計畫強迫科技大廠配合 還不夠, 又 暗中駭入 google 與 yahoo。 所以我那隻剛接收的 android 舊手機完全不註冊 google 的帳戶。 到目前為止, 除了預設的 apps 之外, 我只從 f-droid 下載/安裝軟體。

關於即時通軟體的隱私, 自由軟體界 (一般說來也正是最重視資安的一群人) 似乎都推薦採用 xmpp 通訊協定加上 Off-the-Record (OTR) Messaging 機制。 就算你用的是未加密的開放 wifi、 就算美國國安局和臺灣政府在當中監聽, 也沒在怕的。 如果遇到真正重要的敏感私密內容要傳遞, 我會選擇 OTR 或用 GPG 加密 e-mail 及附檔, 而不會選擇通話或簡訊。 (OTR 具有 deniability 以及 “Perfect forward” 兩項 GPG 所沒有的優點。) 當然, 要確認你通話的對象到底是誰、 他有沒有遭受威脅/會不會八卦, 那就不是 OTR 可以幫得上忙的了。 還有, 既然我們略過 「作業系統層次完全透明化」 的這個堅持, 那麼就必須記得 「Carrier IQ 側錄加密前資訊」 這類風險存在的可能性。 你可以在 f-droid 上面找到支援 OTR 的 gibberbot。 (現在改名為 ChatSecure)順便一提, 因為 Snowden 的爆料及 OFSET 朋友的推薦, 我自己又把許久未用的 ckhung@jabber.org 帳號拿出來用, 歡迎與我測試 OTR :-) 但請注意: 這並不是 e-mail — 如果要在電腦上使用, 你必須安裝 支援 otr 的即時通軟體。 (大部分應該都有 windows 版)

關於通話的安全, Guardian Project 的開放原始碼通話軟體 ostel 看起來很有趣。

關於手機上的資料保護, 如果你覺得離線時的 google 還算可以信任的話, 2.3.4 版本之後的 android 有一個 內建的加密功能。 加密之後, 就算手機掉了, 撿到的人也無法讀出上面的圖/文/影/音。

-----廣告,請繼續往下閱讀-----

關於開放 wifi 連線的安全, 可以用 sshtunnel 加密所有網路連線。 前提是 (1) 你的手機必須 root (2) 你必須在某部 ssh 伺服器主機上有一個帳號。 如此一來, 你與遠端 ssh 伺服器之間的連線將是完全加密的。 位於手機與伺服器之間的任何人 — 包含與你共用未加密 wifi 的身旁陌生人 — 都無法解讀當中傳送的資料。 當然, 從 ssh 伺服連出去的那一段是否安全, 那又是另一回事了。

以下頁面有更多關於保護手機安全與隱私的建議 (大多為英文):

  1. EFF 的 SSD 「防禦監聽」 計畫的 「關於行動裝置」 頁面
  2. The Guardian Project 的 (保護手機安全的) tutorials
  3. Security in-a-box 計畫的 如何尽可能安全地使用手机 頁面 (簡中)
  4. Privacy Rights Clearinghouse 的 Privacy in the Age of the Smartphone 頁面
  5. EncryptEverything 網站的 手機隱私指南

但是別忘了: 只要你使用手機, metadata 就無所遁形 — 你的手機待機的每一刻你人在哪裡、 你何時與誰通話、 與誰通簡訊等等資訊, 掌握在電信業者手裡, 政府要取得這些資料是很容易的事; 也沒有任何 app 可以幫你保護這方面的隱私。 德國綠黨議員 Malte Spitz 已經犧牲自己六個月的隱私, 提醒大家: 手機不離身, 行蹤任人跟

使用手機而導致隱私流失的事件, 更常發生的可能是我們自己的不小心: 例如把小朋友在學校的相片貼上網的同時, 可能也 (透過 GPS 存入 exif 欄位的資訊) 公告了照相的精確時間地點。 最終, 再怎麼強大的 app 也無法阻止欠缺資安意識的使用者自己主動洩漏隱私。 保護手機隱私, 要靠自己, 不能靠任何產品/公司/機構/政府。

-----廣告,請繼續往下閱讀-----

註: 本文所提供的資訊, 是我戴著 “有色” 眼鏡 (”有原始碼, 才有資訊安全可言”) 搜尋與粗略判讀的結果。 自己並未一一親身測試, 甚至並沒有讀完所有連結。

(本文轉載自 資訊人權貴ㄓ疑)

-----廣告,請繼續往下閱讀-----
文章難易度
洪朝貴
47 篇文章 ・ 1 位粉絲

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
如何確保訊息無誤?錯誤更正碼大揭密
數感實驗室_96
・2024/07/03 ・476字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

你有沒有想過,當我們用手機打電話、發簡訊,或者用電腦上網時,訊息是如何在短短幾秒鐘內傳遞到世界的另一端?這背後有一個重要的技術,叫做編碼與調變。

簡單來說,編碼是把我們的資訊轉換成適合傳輸的格式,而調變則是把這些編碼訊號載入到傳輸介質中,無論是電波、光纖還是其他方式。透過這兩項技術,我們才能在繁忙的城市街道上、偏遠的山區裡,甚至是高空中的飛機上,隨時隨地進行無縫的溝通。

在這過程中,錯誤更正碼可以起到哪些幫助呢?

這些技術雖然複雜,但它們在我們日常生活中的應用卻是無處不在的。如果你對這些內容感興趣,未來還有更多的通訊技術值得探討,例如量子通信、光通信和毫米波通信等。這些新興技術將如何改變我們的世界,又會帶來哪些前所未見的便利和挑戰呢?

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室Numeracy Lab的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 51 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
通信三本柱:通信模型大解密
數感實驗室_96
・2024/06/30 ・654字 ・閱讀時間約 1 分鐘

想像一下,你和朋友在咖啡廳聊天。這看似簡單的互動,其實包含一個基本的通信模型喔。你是傳輸端(transmitter),朋友是接收端(receiver),而環境中的其他聲音則構成了通道(channel)。這三者共同組成了基本的通信模型。在接下來的文章中,我們將深入探討這個模型的每一個部分,並了解它們如何影響我們日常的通信體驗。

以上就是數位通信系統的三大支柱:傳輸端、通道和接收端的簡單介紹。實際上,它們的功能遠不止於此,整個通信系統的複雜程度超乎想像。除了數位物理層的演算法和電路設計外,還涉及類比電路、網路層等不同面向,真的是一門博大精深的領域。

通信技術致力於解決全球數十億人每天遇到的實際問題。如果你對於挑戰高難度的數學、物理、演算法問題感興趣,這將是一個充滿寶藏的領域。成功解決這些挑戰,不僅具備巨大的商業價值,更能推動通信科技的進步,提升全人類的通信體驗。你是否已經躍躍欲試了呢?

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 51 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/