Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

警犬分辨得出雙胞胎

陸子鈞
・2011/06/20 ・246字 ・閱讀時間少於 1 分鐘 ・SR值 433 ・四年級

雙胞胎看來似乎能從DNA刑事鑑定中脫罪,但毛茸茸的高手,能確保正義得以伸張。在一項新的研究中,科學家找來一群雙胞胎,包括異卵及同卵雙生,擦拭了他們的臉頰內側後,將擦拭樣本放入罐子中。研究團隊測試十隻德國狼犬,要牠們在模擬考中,找出裝有相同氣味的罐子。每隻狼犬測試12次,沒有一次失誤!即使小孩住在一起;吃一樣的食物;有相同的DNA特徵。無庸置疑的,狼犬是犯罪現場調查的好手。

資料來源:ScienceShot: Police Dogs Can Distinguish Identical Twins [16 June 2011]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
鑑識故事系列:狗咬狗,滿嘴…mtDNA
胡中行_96
・2023/08/14 ・1957字 ・閱讀時間約 4 分鐘

愛犬慘死,兇手逍遙法外。縱然不是每個人都如電影《捍衛任務》的 Johon Wick,身懷絕技,謀求私刑正義;[1]透過科學管道,至少可以討個答案,獲得心靈平靜。義大利某隻母的傑克羅素㹴(Jack Russell Terrier),橫屍寵物旅館的院子,得年 8 歲。犬舍的網子破裂,有向內拉扯的痕跡。寵物旅館老闆養的3隻荷花瓦特犬(Hovawart),嫌疑重大;然而事後到場的獸醫,卻認為野生狐狸或海狸才是罪魁禍首。傑克羅素㹴的主人心有不甘,遂找上波隆那的一所動物疾病預防研究機構(L’Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna)。[2]

非當事傑克羅素㹴。圖/Oskar Kadaksoo on Unsplash

解剖狗屍

這隻傑克羅素㹴死後,在日均溫 7 °C 的環境,被擱置 18 到 20 個鐘頭。接著於 − 18 °C 的冰庫裡,凍了 1 個月,才被研究機構拖出來驗屍。從外觀看來,牠生前的健康狀況良好。不過,毛皮沾血,且有 14 道 7 至 10 公厘,略呈橢圓,邊緣清楚的咬傷,分佈於頸、肩、胸、肋弓、大腿(照片)和鼠蹊。另外,腰部還有個 10 公分長,2.5 公分寬的大傷口。剝掉狗皮後,可見創傷頗深:左邊頸、胸的肌肉浸潤於血中;胸腔與腹腔內,也有輕微出血;肋間肌、肋膜及腹壁穿孔;並有一根肋骨骨折。綜合以上,牠顯然死於咬傷穿透胸部,[2]使空氣在肋膜腔中累積而壓迫肺臟,[3]所導致的氣胸(pneumothorax)。[2]那麼究竟是什麼動物如此殘暴?

nDNA vs. mtDNA

兇手遺留在死者身上的 DNA,是指認身份的好線索。[2]細胞中的細胞核(nucleus)和粒線體(mitochondria)都含有 DNA,[4]分別簡稱為 nDNAmtDNA,兩者並不相同。以人類為例,前者包含從雙親得來的 2 至 3 萬個基因;後者則有 37 個,主要遺傳自母親。[5]分析 nDNA 的短縱列重複序列(short tandem repeat;STR),也就是一些鑑別度高的小片段;[4]或是單核苷酸多型性(single nucleotide polymorphism;SNP),即DNA序列中單一鹼基的變異,[6]便能辨識個體。[2]

以此案來說,最理想的作法,當然是從㹴犬身上的咬傷取樣,分析 nDNA,再比對兇嫌的樣本。可惜屍體於運送的過程中,大概已經受到汙染,驗了也未必準確。再加上寵物旅館的老闆,絕不可能讓3隻荷花瓦特犬配合調查,這個辦案方向根本毫無希望。[2]

-----廣告,請繼續往下閱讀-----

好在天無絕人之路,數根 5 到 10 公分不等,顏色有深有淺的毛髮,不僅卡在死者的牙縫裡(照片),還纏於腳掌上。它們出現的位置奇怪,長得又跟梗犬的不同,或許正是來自兇手。儘管鑑識採集的毛髮時常不帶毛囊,[2]而髮幹的 nDNA 含量又極低,不過會有相當充足的 mtDNA,[7]可以辨識物種。於是,鑑識人員挑了最長又最完整的 4 根送驗。[2]

死者的腳掌,纏著兇嫌的毛髮。圖/參考資料 2,Figure 3(CC BY 4.0)

狼 vs. 犬

毛髮 mtDNA 分析的結果,顯示其來源非狼即犬,才不是獸醫瞎說的狐狸或海狸。如果進一步由傷口位置,回推攻擊方式,嫌疑範圍又會縮得更小:[2]

(Canis lupus)作為掠食者,攻擊講求效率。最好不太耗費能量,便獵得豐美肉食。特別是遇到傑克羅素㹴,這種小型犬的時候,會朝頸部直接咬死,然後狼吞虎嚥。此外,該寵物旅館附近,沒有狼出沒。[2]

相對地,(Canis lupus familiaris)打起架來,才會全身從頭到尾胡亂咬。好不容易把對方搞癱了,卻放著全屍一口沒吃。因此,本案的兇手應該是中、大型犬,而且當時有機會與死者接觸的,唯有那 3 隻毛髮長度和顏色,與證物完全吻合的荷花瓦特犬。[2]

-----廣告,請繼續往下閱讀-----
非當事荷花瓦特犬。圖/Oxborrow on Wikimedia Commons(Public Domain)

身後貢獻

鑑識團隊完成狗主人託付的任務後,撰文介紹將 mtDNA 的細胞色素 b 基因(cytochrome b gene),放大並定序,最後確認物種的細節。[2]雖然不曉得他們的努力,是否有助司法公道,但是好歹已為學術研究貢獻心力。天下蒼生多少默默無聞,死後被立碑著傳的又有幾個?一隻備受寵愛的傑克羅素㹴,能榮登學術期刊,也算不枉此生。

  

  1. John Wick’. IMDb. (Accessed on 02 AUG 2023)
  2. Roccaro M, Bini C, Fais P, et al. (2021) ‘Who killed my dog? Use of forensic genetics to investigate an enigmatic case’. International Journal of Legal Medicine, 135, 387–392.
  3. McKnight CL, Burns B. (15 FEB 2023) ‘Pneumothorax’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Department of Emergency Services and Public Protection. ‘Nuclear DNA’. U.S. Connecticut’s Official State Website. (Accessed on 01 AUG 2023)
  5. Storen R, Smith E. (11 JUN 2021) ‘Mitochondrial donation in Australia.’ FlagPost by Parliament of Australia.
  6. Gunter C. (01 AUG 2023) ‘Single Nucleotide Polymorphisms (SNPs)’. U.S. National Human Genome Research Institute.
  7. Tridico SR, Koch S, Michaud A, et al. (2014) ‘Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?’. Proceedings of the Royal Society B, 2812014175520141755.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

12
3

文字

分享

0
12
3
駭人女師命案 8 年偵破,僅靠一枚小指紋——阿善師鑑識科學講堂
Mirror Voice_96
・2022/12/29 ・2867字 ・閱讀時間約 5 分鐘

本文整理自台灣鑑識權威阿善師(謝松善)與鏡好聽共同製作的有聲課程 《阿善師鑑識科學講堂》 ,更完整內容,請上鏡好聽收聽。

  • 文章來源|鏡好聽

1994 年 11 月 15 日,台北市內湖區新湖國小舉辦園遊會,時任國小老師的吳曉蕙,當天下午至地下停車場洗車後,便一去不返。同校男老師騎車進入地下室時,見到一輛白色汽車停在車道上,引擎發動、車門打開,現場有一些洗車用的器具,還有散置的衣物以及拖行的痕跡,往痕跡尾端一看,竟然看到一具赤裸的女屍——正是不幸遇害的吳曉蕙老師。

然而,當年保護案發現場的觀念尚未普及,在檢警趕到前,已經有許多人來到地下室停車場,甚至設置香案祭拜、用校內值班室使用過的被單覆蓋屍體⋯⋯現場被嚴重破壞,地下室的鞋印新舊雜沓,足跡紊亂,採集到的指紋,一一比對後,皆排除犯案可能,只剩下車內面紙盒上採檢出兩枚較小的指紋與掌紋,實在無從比對,僅研判可能是吳曉蕙曾載過的學生留下。檢警苦尋不著犯罪者,而屍體面部慘遭覆蓋泥土,場面駭人,成為當時震驚社會的一樁懸案。

2002 年,該案沈寂八年後,終於偵破,而破案關鍵正是那無從比對的小指紋!黃姓嫌犯於 2002 年因犯下性侵案而終於指紋建檔,與當年面紙盒上採證到的指紋相符。而黃嫌在警方的偵訊中,也承認了在八年前、年僅 15 歲時犯下了吳曉蕙老師命案,還供出了當年年僅 11 歲的另一位共犯。

-----廣告,請繼續往下閱讀-----

所有人都沒想到,當初那起駭人聽聞的命案,竟是小孩所為,但另一方面,從鑑識科學的角度來看,則突顯了「指紋」此關鍵線索的重要性。

觸物留痕 人各不同

「指紋第一個重要的特點就是『人各不同』而且『各指不同』,指紋之所以做人個化的鑑別,就是因為每一個人的指紋不同且十個指頭的指紋也不同,而第二個特點就是,指紋還是『永久不變』的,雖然會隨著人的成長而變大,但卻不會改變其紋型、特徵不變。」人稱阿善師的鑑識專家謝松善在《阿善師鑑識科學講堂》解說指紋的五大特性。

另外,指紋還有「觸物留痕」、「短期不滅」的特點。指紋會代謝汗液,觸摸物品後,會留下紋路,不過留存時間則因環境因素,如濕度、溫度、通風、日曬等等而有不同,但一般多可以留存一週至一個月左右。其中在吸水性物質上的留存時間可能更長,如紙張、布等等,因指紋的汗液可以滲透到纖維中,可保留較久。曾有一案例,某指文學家將圖書館的書做指紋鑑定,結果採集到了三十年前借閱者的指紋。

最後,指紋還有「損而復生」的特性,假使有病變、脫皮,只要痊癒就會恢復原本的狀態,不會改變紋線特徵,但若用外力破壞,如用刀具、磨砂等等,癒合過後則是生成新的指紋特徵。

-----廣告,請繼續往下閱讀-----

案發現場常見的指紋型態

談完指紋的特性後,阿善師接著介紹案發現場常見的指紋型態,這對於鑑識人員來說,是判斷現場如何踩中的重要依據:

  • 明顯紋:肉眼即可觀察到之平面狀指紋,如手指沾染血跡、油垢後,接觸他物時所轉印的指紋。
  • 成型紋:手指接觸柔軟且無彈性之物面時,所遺留之立體狀指紋,如手指輕觸未乾油漆面、廚房的油垢或嚼過的口香糖等,所留下的立體狀指紋。
  • 潛伏紋:手指接觸物體時,汗腺分泌物所遺留下不易察覺的紋線,如手指觸摸紙張或金屬表面所遺留之指紋,是佔現場最大宗的指紋類型,也是鑑識人員潛心研究的類型。

常見的指紋採證方法

而根據指紋類型的不同,包括指紋本身條件、所在環境、接觸材質及儀器設備等等,鑑識人員會選擇適當的採驗方法,常透過以下三種方式採證指紋——固體法、液體法、氣體法。

首先,犯罪影集常見到鑑識人員帶戴著口罩、手套,拿著一把刷子,在物體表面上刷呀刷,那就是所謂的粉末法,也就是固體法的其中一種代表作法。

因為手指分泌汗液是指紋能沾附即被顯現的重要原理,汗液的成分中有 98.5% 的水分及油脂等代謝物,這些物質都具有黏性,因此粉末法即用毛刷,沾附極細的粉末,刷上物體表面,指紋的黏性把粉末黏住,就會把指紋紋型顯現出來。

-----廣告,請繼續往下閱讀-----

另一種固體法為磁粉法,原理與粉末法類似,只不過不適用粉末跟毛刷,而是以帶有碳粒子的鐵粉,運用磁鐵棒(即磁性檢出器,磁筆)吸取磁性粉(鐵粉),輕輕在檢體上掠過,再吸除多餘的磁性粉即可顯現。

而第二種液體法,代表性的作法即寧海德林法(Ninhydrin),也是普遍使用在吸水性物體的一種指紋顯現方法。。指紋有很多代謝物,其中物質可以跟某些化學藥劑產生反應,而寧海德林法即是用一種氨基酸反應成色試劑(寧海德林試劑),以噴霧、浸潤或灑覆法潤濕,讓原先看不到的潛伏紋,透過代謝物與有機溶劑產生化學反應,呈現深紫色生成物。

最後,氣體法的代表作法是氰丙烯酸酯法(Cyanoacrylate Adhesive,又稱瞬間接著劑法、 三秒膠法),也是普遍使用在不吸水性物體的一種指紋顯現方法。指紋汗液代謝物成份中存在水份及其他含陰離子之分子,氰丙烯酸酯會與這些分子產生聚合反應而使指紋顯出。

所以,將檢體置於密閉容器或空間內,再將氰丙烯酸酯(也就是三秒膠)置於加熱盤上加熱,使氰丙烯酸酯蒸發,若可調節溼度時,理想之溼度為百分之六十至八十之間,直到白色指紋顯現為止。當煙燻一段時間後,取出檢體並檢視其上之潛伏指紋,若紋線不足時,可視情形重複煙燻多次,直到反應完全為止。

-----廣告,請繼續往下閱讀-----

而採集到指紋後,鑑識人員怎麼判斷兩枚指紋是否出自同一人?阿善師提到,除了紋型、紋線流向相符外,還要找到超過12個特徵點相符,是鑑識上判斷為同一枚指紋的標準。過去是透過人工,一張一張去比對、找出特徵點,執行上非常困難,後來數位化,透過電腦比對,效率相對提高,但因為現場找到的指紋通常有很多模糊或破損的部分,因此仍需靠人工去確認、判斷。

儘管指紋鑑定並非完美無缺,但從吳曉蕙老師命案的例子來看,卻是破案的關鍵線索,也是鑑識領域不可獲缺的技術。除了指紋之外,阿善師還在《阿善師鑑識科學講堂》有聲課程中,講解了其他的鑑識關鍵技術,如血液、彈道、測謊、DNA 等等,每一項技術,搭配一件重大命案,透過阿善師的解說,聲歷其境,彷彿跟著鑑識人員重返犯罪現場,在刑案實務中,學習鑑識領域的基礎知識!

現在就上鏡好聽收聽《阿善師鑑識科學講堂》

-----廣告,請繼續往下閱讀-----