Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

警犬分辨得出雙胞胎

陸子鈞
・2011/06/20 ・246字 ・閱讀時間少於 1 分鐘 ・SR值 433 ・四年級

雙胞胎看來似乎能從DNA刑事鑑定中脫罪,但毛茸茸的高手,能確保正義得以伸張。在一項新的研究中,科學家找來一群雙胞胎,包括異卵及同卵雙生,擦拭了他們的臉頰內側後,將擦拭樣本放入罐子中。研究團隊測試十隻德國狼犬,要牠們在模擬考中,找出裝有相同氣味的罐子。每隻狼犬測試12次,沒有一次失誤!即使小孩住在一起;吃一樣的食物;有相同的DNA特徵。無庸置疑的,狼犬是犯罪現場調查的好手。

資料來源:ScienceShot: Police Dogs Can Distinguish Identical Twins [16 June 2011]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
鑑識故事系列:狗咬狗,滿嘴…mtDNA
胡中行_96
・2023/08/14 ・1957字 ・閱讀時間約 4 分鐘

愛犬慘死,兇手逍遙法外。縱然不是每個人都如電影《捍衛任務》的 Johon Wick,身懷絕技,謀求私刑正義;[1]透過科學管道,至少可以討個答案,獲得心靈平靜。義大利某隻母的傑克羅素㹴(Jack Russell Terrier),橫屍寵物旅館的院子,得年 8 歲。犬舍的網子破裂,有向內拉扯的痕跡。寵物旅館老闆養的3隻荷花瓦特犬(Hovawart),嫌疑重大;然而事後到場的獸醫,卻認為野生狐狸或海狸才是罪魁禍首。傑克羅素㹴的主人心有不甘,遂找上波隆那的一所動物疾病預防研究機構(L’Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna)。[2]

非當事傑克羅素㹴。圖/Oskar Kadaksoo on Unsplash

解剖狗屍

這隻傑克羅素㹴死後,在日均溫 7 °C 的環境,被擱置 18 到 20 個鐘頭。接著於 − 18 °C 的冰庫裡,凍了 1 個月,才被研究機構拖出來驗屍。從外觀看來,牠生前的健康狀況良好。不過,毛皮沾血,且有 14 道 7 至 10 公厘,略呈橢圓,邊緣清楚的咬傷,分佈於頸、肩、胸、肋弓、大腿(照片)和鼠蹊。另外,腰部還有個 10 公分長,2.5 公分寬的大傷口。剝掉狗皮後,可見創傷頗深:左邊頸、胸的肌肉浸潤於血中;胸腔與腹腔內,也有輕微出血;肋間肌、肋膜及腹壁穿孔;並有一根肋骨骨折。綜合以上,牠顯然死於咬傷穿透胸部,[2]使空氣在肋膜腔中累積而壓迫肺臟,[3]所導致的氣胸(pneumothorax)。[2]那麼究竟是什麼動物如此殘暴?

nDNA vs. mtDNA

兇手遺留在死者身上的 DNA,是指認身份的好線索。[2]細胞中的細胞核(nucleus)和粒線體(mitochondria)都含有 DNA,[4]分別簡稱為 nDNAmtDNA,兩者並不相同。以人類為例,前者包含從雙親得來的 2 至 3 萬個基因;後者則有 37 個,主要遺傳自母親。[5]分析 nDNA 的短縱列重複序列(short tandem repeat;STR),也就是一些鑑別度高的小片段;[4]或是單核苷酸多型性(single nucleotide polymorphism;SNP),即DNA序列中單一鹼基的變異,[6]便能辨識個體。[2]

以此案來說,最理想的作法,當然是從㹴犬身上的咬傷取樣,分析 nDNA,再比對兇嫌的樣本。可惜屍體於運送的過程中,大概已經受到汙染,驗了也未必準確。再加上寵物旅館的老闆,絕不可能讓3隻荷花瓦特犬配合調查,這個辦案方向根本毫無希望。[2]

-----廣告,請繼續往下閱讀-----

好在天無絕人之路,數根 5 到 10 公分不等,顏色有深有淺的毛髮,不僅卡在死者的牙縫裡(照片),還纏於腳掌上。它們出現的位置奇怪,長得又跟梗犬的不同,或許正是來自兇手。儘管鑑識採集的毛髮時常不帶毛囊,[2]而髮幹的 nDNA 含量又極低,不過會有相當充足的 mtDNA,[7]可以辨識物種。於是,鑑識人員挑了最長又最完整的 4 根送驗。[2]

死者的腳掌,纏著兇嫌的毛髮。圖/參考資料 2,Figure 3(CC BY 4.0)

狼 vs. 犬

毛髮 mtDNA 分析的結果,顯示其來源非狼即犬,才不是獸醫瞎說的狐狸或海狸。如果進一步由傷口位置,回推攻擊方式,嫌疑範圍又會縮得更小:[2]

(Canis lupus)作為掠食者,攻擊講求效率。最好不太耗費能量,便獵得豐美肉食。特別是遇到傑克羅素㹴,這種小型犬的時候,會朝頸部直接咬死,然後狼吞虎嚥。此外,該寵物旅館附近,沒有狼出沒。[2]

相對地,(Canis lupus familiaris)打起架來,才會全身從頭到尾胡亂咬。好不容易把對方搞癱了,卻放著全屍一口沒吃。因此,本案的兇手應該是中、大型犬,而且當時有機會與死者接觸的,唯有那 3 隻毛髮長度和顏色,與證物完全吻合的荷花瓦特犬。[2]

-----廣告,請繼續往下閱讀-----
非當事荷花瓦特犬。圖/Oxborrow on Wikimedia Commons(Public Domain)

身後貢獻

鑑識團隊完成狗主人託付的任務後,撰文介紹將 mtDNA 的細胞色素 b 基因(cytochrome b gene),放大並定序,最後確認物種的細節。[2]雖然不曉得他們的努力,是否有助司法公道,但是好歹已為學術研究貢獻心力。天下蒼生多少默默無聞,死後被立碑著傳的又有幾個?一隻備受寵愛的傑克羅素㹴,能榮登學術期刊,也算不枉此生。

  

  1. John Wick’. IMDb. (Accessed on 02 AUG 2023)
  2. Roccaro M, Bini C, Fais P, et al. (2021) ‘Who killed my dog? Use of forensic genetics to investigate an enigmatic case’. International Journal of Legal Medicine, 135, 387–392.
  3. McKnight CL, Burns B. (15 FEB 2023) ‘Pneumothorax’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Department of Emergency Services and Public Protection. ‘Nuclear DNA’. U.S. Connecticut’s Official State Website. (Accessed on 01 AUG 2023)
  5. Storen R, Smith E. (11 JUN 2021) ‘Mitochondrial donation in Australia.’ FlagPost by Parliament of Australia.
  6. Gunter C. (01 AUG 2023) ‘Single Nucleotide Polymorphisms (SNPs)’. U.S. National Human Genome Research Institute.
  7. Tridico SR, Koch S, Michaud A, et al. (2014) ‘Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?’. Proceedings of the Royal Society B, 2812014175520141755.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

12
3

文字

分享

0
12
3
駭人女師命案 8 年偵破,僅靠一枚小指紋——阿善師鑑識科學講堂
Mirror Voice_96
・2022/12/29 ・2867字 ・閱讀時間約 5 分鐘

本文整理自台灣鑑識權威阿善師(謝松善)與鏡好聽共同製作的有聲課程 《阿善師鑑識科學講堂》 ,更完整內容,請上鏡好聽收聽。

  • 文章來源|鏡好聽

1994 年 11 月 15 日,台北市內湖區新湖國小舉辦園遊會,時任國小老師的吳曉蕙,當天下午至地下停車場洗車後,便一去不返。同校男老師騎車進入地下室時,見到一輛白色汽車停在車道上,引擎發動、車門打開,現場有一些洗車用的器具,還有散置的衣物以及拖行的痕跡,往痕跡尾端一看,竟然看到一具赤裸的女屍——正是不幸遇害的吳曉蕙老師。

然而,當年保護案發現場的觀念尚未普及,在檢警趕到前,已經有許多人來到地下室停車場,甚至設置香案祭拜、用校內值班室使用過的被單覆蓋屍體⋯⋯現場被嚴重破壞,地下室的鞋印新舊雜沓,足跡紊亂,採集到的指紋,一一比對後,皆排除犯案可能,只剩下車內面紙盒上採檢出兩枚較小的指紋與掌紋,實在無從比對,僅研判可能是吳曉蕙曾載過的學生留下。檢警苦尋不著犯罪者,而屍體面部慘遭覆蓋泥土,場面駭人,成為當時震驚社會的一樁懸案。

2002 年,該案沈寂八年後,終於偵破,而破案關鍵正是那無從比對的小指紋!黃姓嫌犯於 2002 年因犯下性侵案而終於指紋建檔,與當年面紙盒上採證到的指紋相符。而黃嫌在警方的偵訊中,也承認了在八年前、年僅 15 歲時犯下了吳曉蕙老師命案,還供出了當年年僅 11 歲的另一位共犯。

-----廣告,請繼續往下閱讀-----

所有人都沒想到,當初那起駭人聽聞的命案,竟是小孩所為,但另一方面,從鑑識科學的角度來看,則突顯了「指紋」此關鍵線索的重要性。

觸物留痕 人各不同

「指紋第一個重要的特點就是『人各不同』而且『各指不同』,指紋之所以做人個化的鑑別,就是因為每一個人的指紋不同且十個指頭的指紋也不同,而第二個特點就是,指紋還是『永久不變』的,雖然會隨著人的成長而變大,但卻不會改變其紋型、特徵不變。」人稱阿善師的鑑識專家謝松善在《阿善師鑑識科學講堂》解說指紋的五大特性。

另外,指紋還有「觸物留痕」、「短期不滅」的特點。指紋會代謝汗液,觸摸物品後,會留下紋路,不過留存時間則因環境因素,如濕度、溫度、通風、日曬等等而有不同,但一般多可以留存一週至一個月左右。其中在吸水性物質上的留存時間可能更長,如紙張、布等等,因指紋的汗液可以滲透到纖維中,可保留較久。曾有一案例,某指文學家將圖書館的書做指紋鑑定,結果採集到了三十年前借閱者的指紋。

最後,指紋還有「損而復生」的特性,假使有病變、脫皮,只要痊癒就會恢復原本的狀態,不會改變紋線特徵,但若用外力破壞,如用刀具、磨砂等等,癒合過後則是生成新的指紋特徵。

-----廣告,請繼續往下閱讀-----

案發現場常見的指紋型態

談完指紋的特性後,阿善師接著介紹案發現場常見的指紋型態,這對於鑑識人員來說,是判斷現場如何踩中的重要依據:

  • 明顯紋:肉眼即可觀察到之平面狀指紋,如手指沾染血跡、油垢後,接觸他物時所轉印的指紋。
  • 成型紋:手指接觸柔軟且無彈性之物面時,所遺留之立體狀指紋,如手指輕觸未乾油漆面、廚房的油垢或嚼過的口香糖等,所留下的立體狀指紋。
  • 潛伏紋:手指接觸物體時,汗腺分泌物所遺留下不易察覺的紋線,如手指觸摸紙張或金屬表面所遺留之指紋,是佔現場最大宗的指紋類型,也是鑑識人員潛心研究的類型。

常見的指紋採證方法

而根據指紋類型的不同,包括指紋本身條件、所在環境、接觸材質及儀器設備等等,鑑識人員會選擇適當的採驗方法,常透過以下三種方式採證指紋——固體法、液體法、氣體法。

首先,犯罪影集常見到鑑識人員帶戴著口罩、手套,拿著一把刷子,在物體表面上刷呀刷,那就是所謂的粉末法,也就是固體法的其中一種代表作法。

因為手指分泌汗液是指紋能沾附即被顯現的重要原理,汗液的成分中有 98.5% 的水分及油脂等代謝物,這些物質都具有黏性,因此粉末法即用毛刷,沾附極細的粉末,刷上物體表面,指紋的黏性把粉末黏住,就會把指紋紋型顯現出來。

-----廣告,請繼續往下閱讀-----

另一種固體法為磁粉法,原理與粉末法類似,只不過不適用粉末跟毛刷,而是以帶有碳粒子的鐵粉,運用磁鐵棒(即磁性檢出器,磁筆)吸取磁性粉(鐵粉),輕輕在檢體上掠過,再吸除多餘的磁性粉即可顯現。

而第二種液體法,代表性的作法即寧海德林法(Ninhydrin),也是普遍使用在吸水性物體的一種指紋顯現方法。。指紋有很多代謝物,其中物質可以跟某些化學藥劑產生反應,而寧海德林法即是用一種氨基酸反應成色試劑(寧海德林試劑),以噴霧、浸潤或灑覆法潤濕,讓原先看不到的潛伏紋,透過代謝物與有機溶劑產生化學反應,呈現深紫色生成物。

最後,氣體法的代表作法是氰丙烯酸酯法(Cyanoacrylate Adhesive,又稱瞬間接著劑法、 三秒膠法),也是普遍使用在不吸水性物體的一種指紋顯現方法。指紋汗液代謝物成份中存在水份及其他含陰離子之分子,氰丙烯酸酯會與這些分子產生聚合反應而使指紋顯出。

所以,將檢體置於密閉容器或空間內,再將氰丙烯酸酯(也就是三秒膠)置於加熱盤上加熱,使氰丙烯酸酯蒸發,若可調節溼度時,理想之溼度為百分之六十至八十之間,直到白色指紋顯現為止。當煙燻一段時間後,取出檢體並檢視其上之潛伏指紋,若紋線不足時,可視情形重複煙燻多次,直到反應完全為止。

-----廣告,請繼續往下閱讀-----

而採集到指紋後,鑑識人員怎麼判斷兩枚指紋是否出自同一人?阿善師提到,除了紋型、紋線流向相符外,還要找到超過12個特徵點相符,是鑑識上判斷為同一枚指紋的標準。過去是透過人工,一張一張去比對、找出特徵點,執行上非常困難,後來數位化,透過電腦比對,效率相對提高,但因為現場找到的指紋通常有很多模糊或破損的部分,因此仍需靠人工去確認、判斷。

儘管指紋鑑定並非完美無缺,但從吳曉蕙老師命案的例子來看,卻是破案的關鍵線索,也是鑑識領域不可獲缺的技術。除了指紋之外,阿善師還在《阿善師鑑識科學講堂》有聲課程中,講解了其他的鑑識關鍵技術,如血液、彈道、測謊、DNA 等等,每一項技術,搭配一件重大命案,透過阿善師的解說,聲歷其境,彷彿跟著鑑識人員重返犯罪現場,在刑案實務中,學習鑑識領域的基礎知識!

現在就上鏡好聽收聽《阿善師鑑識科學講堂》

-----廣告,請繼續往下閱讀-----