4

0
0

文字

分享

4
0
0

航海家太陽系邊緣大發現

futaichuang
・2011/06/11 ・1750字 ・閱讀時間約 3 分鐘

大家還記得航海家1、2號探測船嗎?在1977年8月和9月分別升空的航海家1、2號太空船航行至今已經快要35年了,截至2011/6/11,航海家1號距離地球約174億公里,相當於116.5A.U.(說文解字-1),航海家2號距離地球約142億公里,相當於95.6A.U.,航海家1號的訊號以光速傳回地球約需要32小時17分鐘,航海家2號則需要26小時18分,我們很難想像,以當年的通訊和計算能力,到如今他們還在工作,其實當年的科學家可能也沒想到人類科技進步這麼快速,到目前我們還可以透過Deep Space Network(說文解字-2)的大型天線解析他們的訊號,他們到了人類前所未到的區域,在太陽系的最邊緣,安靜地緩緩航向星際間的空間,最近航海家傳回來令人驚奇的訊息,波士頓大學的天文學家Merav Opher說:「航海家似乎進入了一個充滿磁泡泡(magnetic bubble)的新奇國度,非常令人感到驚奇!」

根據電腦模式的運算,每一個磁泡泡的大小約為100百萬英哩,以航海家探測船的速度要數星期才能穿越一個磁泡泡,航海家1號約於2007年進入這個泡沫區(foam zone),航海家2號則於一年後抵達,一開始,科學家不知道探測船探測到了甚麼?但他們現在有了很好的想法。

一個磁泡泡的大小

「太陽的磁場一直延伸到太陽系的邊緣區域」Opher解釋說:「由於太陽的自轉,使得太陽磁場扭曲皺褶如芭蕾舞裙,隨著離開太陽越來越遠,這些皺褶都疊合起來了,現在航海家就在這裡。」

當磁場被摺疊起來,有趣的事情就發生了,磁力線被迫交錯重疊,於是會重新連結(reconnect;國中理化有教過,任何兩條磁力線不能交錯而過,這個現象和太陽閃焰下方的磁力線會重新連結一樣),於是不斷擠壓摺疊的裙襬就會自己重整,有時甚至會爆炸,最後形成泡沫般的磁泡泡。

請看這個影片會比較容易了解:

回想1950年代的觀點和現在極為不同,當時認為遠日端的太陽磁場的應該是以一種平滑的弧形彎曲著,而最後彎曲回太陽。現在這些磁力泡看來應該是獨立的而且和太陽磁場的邊緣並未有連結,解讀航海家能量粒子偵測器的觀測數據,發現航海家似乎經常有進入和走出泡泡的現象,舊的理論模式已經無法完全解釋航海家的發現。

「我們正在設法釐清這些發現帶給我們的啟示」Opher的工作夥伴,來自馬里蘭大學的Jim Drake說。

太陽遠日端磁場的結構究竟是泡沫狀還是非泡沫狀,對科學的意義非常重大,因為它定義著我們和銀河系中其他區域交界的交互作用形式,研究者將航海家目前所在的位置稱為日鞘(heliosheath),就是太陽系和銀河系其他星際空間的交界位置,有許多東西在這區域穿越,如星際雲氣、銀河磁力結(Knots of galactic magnetism)、宇宙射線(cosmic rays)等,這些入侵者會被磁場泡沫所阻擾(新觀點)還是被平滑磁力線作用引回太陽(舊觀點)呢?

舊的太陽磁場模式
新的太陽磁場模式

我們以宇宙射線作為說明例子,星系的宇宙射線主要是被黑洞或超新星爆炸所加速到接近光速的次原子顆粒,當這些微觀尺度下看似砲彈的粒子要進入太陽系的時候,它們就必須抵抗太陽磁場以接近內行星。

「這些磁泡泡可能就是我們對抗宇宙射線的第一道防線,」Opher指出「不過我們尚未釐清磁泡泡這樣的結構是好是壞。」

一方面泡泡似乎是一個多孔隙的保護盾,可能讓許多宇宙射線穿越這些孔隙,另一方面宇宙射線可能被攔阻在磁泡泡中,這使泡沫成為一個很好的保護盾。

「隨著航海家越來越深入泡沫區,我們將持續探索哪一個想法是正確的,而且持續了解它的結構」Opher說「這才剛剛開始,將有越來越多的驚奇」

取材自:A Big Surprise from the Edge of the Solar System. NASA [June 9, 2011]

說文解字
1.A.U.:指天文單位(astronomical unit):天文單位(AU)最原始的定義是地球環繞太陽的橢圓軌道半長軸長度,我們一般常說是地球到太陽的平均距離。在1976年,國際天文聯合會(IAU)修正了AU的定義使它更為精確,但這個定義很複雜,有興趣可以看維基百科的解釋,(天文單位),目前1天文單位相當於149,597,870,691±30公尺。

2.Deep space network:深空網路是一個跨國的計畫,用來接收來自宇宙的微弱訊號,是在地球上相距約120度的三個地點(分別位於美國加州、西班牙馬德里、澳洲坎培拉)建立大型接收天線,以確保地球自轉過程中都能隨時接收訊號,目前對航海家1、2號的追蹤主要是由Deep space network所負責,請看相關網頁

本文同步發表於:地球科學學習小站

文章難易度
所有討論 4
futaichuang
6 篇文章 ・ 0 位粉絲

0

4
0

文字

分享

0
4
0

整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域

CASE PRESS_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

參考資料

CASE PRESS_96
207 篇文章 ・ 1122 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策