4

0
0

文字

分享

4
0
0

航海家太陽系邊緣大發現

futaichuang
・2011/06/11 ・1750字 ・閱讀時間約 3 分鐘 ・SR值 520 ・七年級

大家還記得航海家1、2號探測船嗎?在1977年8月和9月分別升空的航海家1、2號太空船航行至今已經快要35年了,截至2011/6/11,航海家1號距離地球約174億公里,相當於116.5A.U.(說文解字-1),航海家2號距離地球約142億公里,相當於95.6A.U.,航海家1號的訊號以光速傳回地球約需要32小時17分鐘,航海家2號則需要26小時18分,我們很難想像,以當年的通訊和計算能力,到如今他們還在工作,其實當年的科學家可能也沒想到人類科技進步這麼快速,到目前我們還可以透過Deep Space Network(說文解字-2)的大型天線解析他們的訊號,他們到了人類前所未到的區域,在太陽系的最邊緣,安靜地緩緩航向星際間的空間,最近航海家傳回來令人驚奇的訊息,波士頓大學的天文學家Merav Opher說:「航海家似乎進入了一個充滿磁泡泡(magnetic bubble)的新奇國度,非常令人感到驚奇!」

根據電腦模式的運算,每一個磁泡泡的大小約為100百萬英哩,以航海家探測船的速度要數星期才能穿越一個磁泡泡,航海家1號約於2007年進入這個泡沫區(foam zone),航海家2號則於一年後抵達,一開始,科學家不知道探測船探測到了甚麼?但他們現在有了很好的想法。

一個磁泡泡的大小

「太陽的磁場一直延伸到太陽系的邊緣區域」Opher解釋說:「由於太陽的自轉,使得太陽磁場扭曲皺褶如芭蕾舞裙,隨著離開太陽越來越遠,這些皺褶都疊合起來了,現在航海家就在這裡。」

當磁場被摺疊起來,有趣的事情就發生了,磁力線被迫交錯重疊,於是會重新連結(reconnect;國中理化有教過,任何兩條磁力線不能交錯而過,這個現象和太陽閃焰下方的磁力線會重新連結一樣),於是不斷擠壓摺疊的裙襬就會自己重整,有時甚至會爆炸,最後形成泡沫般的磁泡泡。

請看這個影片會比較容易了解:

回想1950年代的觀點和現在極為不同,當時認為遠日端的太陽磁場的應該是以一種平滑的弧形彎曲著,而最後彎曲回太陽。現在這些磁力泡看來應該是獨立的而且和太陽磁場的邊緣並未有連結,解讀航海家能量粒子偵測器的觀測數據,發現航海家似乎經常有進入和走出泡泡的現象,舊的理論模式已經無法完全解釋航海家的發現。

「我們正在設法釐清這些發現帶給我們的啟示」Opher的工作夥伴,來自馬里蘭大學的Jim Drake說。

太陽遠日端磁場的結構究竟是泡沫狀還是非泡沫狀,對科學的意義非常重大,因為它定義著我們和銀河系中其他區域交界的交互作用形式,研究者將航海家目前所在的位置稱為日鞘(heliosheath),就是太陽系和銀河系其他星際空間的交界位置,有許多東西在這區域穿越,如星際雲氣、銀河磁力結(Knots of galactic magnetism)、宇宙射線(cosmic rays)等,這些入侵者會被磁場泡沫所阻擾(新觀點)還是被平滑磁力線作用引回太陽(舊觀點)呢?

舊的太陽磁場模式
新的太陽磁場模式

我們以宇宙射線作為說明例子,星系的宇宙射線主要是被黑洞或超新星爆炸所加速到接近光速的次原子顆粒,當這些微觀尺度下看似砲彈的粒子要進入太陽系的時候,它們就必須抵抗太陽磁場以接近內行星。

「這些磁泡泡可能就是我們對抗宇宙射線的第一道防線,」Opher指出「不過我們尚未釐清磁泡泡這樣的結構是好是壞。」

一方面泡泡似乎是一個多孔隙的保護盾,可能讓許多宇宙射線穿越這些孔隙,另一方面宇宙射線可能被攔阻在磁泡泡中,這使泡沫成為一個很好的保護盾。

「隨著航海家越來越深入泡沫區,我們將持續探索哪一個想法是正確的,而且持續了解它的結構」Opher說「這才剛剛開始,將有越來越多的驚奇」

取材自:A Big Surprise from the Edge of the Solar System. NASA [June 9, 2011]

說文解字
1.A.U.:指天文單位(astronomical unit):天文單位(AU)最原始的定義是地球環繞太陽的橢圓軌道半長軸長度,我們一般常說是地球到太陽的平均距離。在1976年,國際天文聯合會(IAU)修正了AU的定義使它更為精確,但這個定義很複雜,有興趣可以看維基百科的解釋,(天文單位),目前1天文單位相當於149,597,870,691±30公尺。

2.Deep space network:深空網路是一個跨國的計畫,用來接收來自宇宙的微弱訊號,是在地球上相距約120度的三個地點(分別位於美國加州、西班牙馬德里、澳洲坎培拉)建立大型接收天線,以確保地球自轉過程中都能隨時接收訊號,目前對航海家1、2號的追蹤主要是由Deep space network所負責,請看相關網頁

本文同步發表於:地球科學學習小站

文章難易度
所有討論 4
futaichuang
6 篇文章 ・ 0 位粉絲

0

1
0

文字

分享

0
1
0
太陽系裡最大的峽谷、最高的火山,都在火星上!——《有趣的天文學》
麥浩斯
・2022/04/23 ・769字 ・閱讀時間約 1 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

布滿鐵鏽的紅色沙漠:火星

在地球上用望遠鏡觀察火星,火星上的地形很難看清楚,只能看到最明顯的三種顏色色塊:紅、黑和白色。

比起水星和金星,火星算是比較宜人的行星,人類已經發射許多太空船前往探索,未來甚至可能移民到火星上生活,火星很可能成為人類下一個家園。圖/麥浩斯出版

火星表面充滿紅色塵埃,這些紅色塵埃由氧化鐵組成,也就是鐵鏽,火星表面絕大部分被氧化鐵覆蓋,所以表面看起來是紅色。

火星表面還有黑色的玄武岩,這些黑色玄武岩不會一直在那裡,有時黑色玄武岩會被紅色塵土覆蓋,當紅色塵土被吹散,黑色玄武岩又裸露出來。火星在南北兩極有白色的極冠,極冠是由水冰和乾冰組成,南北兩極的極冠會隨著季節變換而改變大小。

在火星上,除了兩極的白色極冠,還可以看見一些由冰晶組成的藍白色水冰雲。

壯觀的峽谷和火山

雖然火星的直徑只有地球的一半,不過火星上的峽谷和火山卻非常壯觀。

水手峽谷(Valles Marineris)長度約四千公里,這相當於美國的寬度,最深可達 7 公里,是太陽系裡最大的峽谷之一。火星表面有一座太陽系裡最高的火山:奧林帕斯山(Olympus Mons),奧林帕斯山是座盾狀火山,如果從附近的平原算起,它的高度約 26 公里。

圖/麥浩斯出版

比起荒涼死寂的水星和高壓炙熱的金星,火星似乎有趣多了!

──本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版

0

3
0

文字

分享

0
3
0
人造衛星的眼睛——恆星追蹤儀 aka 星象儀
黃 正中_96
・2021/08/17 ・2131字 ・閱讀時間約 4 分鐘

文/黃正中 研究員、丘政倫 博士|國家太空中心

幾千年來,航海者觀察著星星來確定他們在海上的位置,這種「看到而知之」的概念,也被運用在人造衛星的「恆星追蹤儀」上,用來確認所在位置與控制人造衛星的姿態,因此也被稱為「人造衛星的眼睛」。

福爾摩沙五號衛星的恆星追蹤儀。圖/太空中心

人造衛星的眼睛——恆星追蹤儀

恆星追蹤儀,又稱星象儀,是人造衛星的關鍵元件,工程師們利用恆星追蹤儀所記錄宇宙中的星光比對恆星(如下圖),參考地球自轉速率,以及人造衛星飛行的慣性,經過演算,可以判斷目前人造衛星飛行的位置和姿態。

恆星追蹤儀比對恆星軟體。圖/wikipedia

在宇宙中任何兩顆明亮的星星,星星之間的角度、間隔都是獨特的,沒有一對間隔完全相同的明亮的恆星。恆星追蹤儀使用分離角度來識別相機所指向的恆星,利用這些信息,人造衛星可以演算出在太空中的相對位置。

但是,約莫二十年前的發射的福衛一號,其實並沒有裝上恆星追蹤儀喔!這沒有眼睛的人造衛星到底是怎麼一回事呢?

沒有眼睛的福爾摩沙衛星一號

國家太空中心所研製的福爾摩沙衛星一號,在研發階段時,恆星追蹤儀尚未成為標準元件,而是使用慣性導航系統(inertial navigation systems, INS),慣性導航系統所選擇的引導星取決於地球自轉的時間和目標的位置,利用加速計和陀螺儀測量物體的加速度和角速度,估算連續運動物體位置、姿態和速度。慣性導航系統的優勢在於給定了初始條件後,不需要外部參考外部資訊 (例如恆星資料庫),就可確定當前位置、方向及速度,然而,隨著遙測衛星的照相的需求,對於地理位置判斷,姿態控制的精確度已經跟不上任務需求。

因此,後續發展的福爾摩沙二號衛星,便使用了「恆星追蹤儀」,以參考恆星資料庫與相對角度的方法,大幅提高了姿態控制的姿態控制精確度。當時的「恆星追蹤儀」是外購衛星元件,然而從福爾摩沙八號衛星開始,我國衛星採用自主研發成功的恆星追蹤儀,成為我國衛星姿態控制的標準配備。

恆星追蹤儀的結構

恆星追蹤儀是光學裝置,若使用光電池作為主要偵測器,準確度比較低;偵測器若使用照相機則靈敏度較高,可以獲得相對比較好的解析度;恆星追蹤儀主要的配置包括遮光罩、鏡頭、影像感測器(CCD 或 CMOS)、驅動控制器、處理器、軟體、電源供應以及介面。

恆星追蹤儀主要配置。圖/作者提供

目前天文學家已經精確測量了許多恆星位置,並記錄在恆星資料庫中,因此人造衛星可以用來比對恆星資料庫,經由偵測器獲取鏡頭視野中恆星分布的圖像,經由演算法可以測量人造衛星在參考座標中的所在位置,用以確定衛星飛行的方向或姿態。

恆星追蹤儀的發展

恆星追蹤儀經過廿年來的發展,市面上已經出現許多高靈敏度的恆星追蹤儀型號,具有過濾錯誤光源的功能,例如人造衛星表面反射的陽光或人造衛星推進器產生的廢氣羽流,以排除陽光反射或恆星追蹤儀窗口受到污染等干擾。除了各種誤差源,新型的恆星追蹤儀能修正包括球差、色差,以及低空間頻率、高空間頻率、時間等的各種誤差。

恆星追蹤儀的識別機制

一般恆星追蹤儀的識別算法,主要利用宇宙中共有約 57 個常用的明亮導航星星;但是,對於更複雜的任務,則需要更多數量的恆星數據庫以確定人造衛星的方向;通常高精度姿態需要數千顆恆星的目錄以確保全天各角落都有足夠星數落在視野內可供辨識,比對並過濾以去除有問題的光點,例如大尺度的星際變化,顏色指數不確定性,或在資料庫中的位置顯示不可靠的情況。這些類型的恆星目錄經演算法最佳化後,即儲存為衛星上的機載恆星資料庫。

恆星追蹤儀發展恆星識別算法,還要注意很多潛在的混淆源,例如行星,彗星,超新星等相鄰天體;除此之外,太空中鄰近的人造衛星,地球上大城市的燈源或光污染等光點,則需要擴散函數的雙峰特徵加以排除。

商用恆星追蹤儀

近年來商用恆星追蹤儀如雨後春筍,相繼出現在大型航太展;看到了立方衛星的商機,恆星追蹤儀也出現微小化,麻雀雖小卻五臟俱全,誤差精度已表現不俗,可以裝置在衛星上。

上圖是微小型恆星追蹤儀影用在立方衛星上(下圖)。圖/NASA

國家太空中心恆星追蹤儀研發

近幾年來國際上許多單位相繼投入恆星追蹤儀的研發,包括我國的國家太空中心將恆星追蹤儀列為前瞻關鍵研發項目,並已掌握跨領域整合之關鍵技術,取得不錯的研發成果,國產恆星追蹤儀將會應用在福爾摩沙八號衛星。

參考資料

  1. 國家太空中心網站 
  2. 恆星追蹤儀維基網站
  3. NASA 網站
黃 正中_96
8 篇文章 ・ 6 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...

0

9
0

文字

分享

0
9
0
2020 重要天文事件回顧
臺北天文館_96
・2021/03/01 ・4340字 ・閱讀時間約 9 分鐘 ・SR值 548 ・八年級

塵埃可能是參宿四變暗的罪魁禍首

參宿四是全天第九亮星,也是獵戶座第二亮星。圖/轉自《臺北星空》

去年年底,天文學家發現參宿四的亮度異常降低,這現象還被某些人解釋為這顆紅超巨星已幾乎沒有核燃料,即將發生超新星爆炸。不過,華盛頓大學和羅威爾天文台的天文學家認為,參宿四更可能只是正在發生其他紅超巨星也會發生的事情:拋出的外層大氣遮住了一些往地球的光線。

天文學家在二月進行的觀測數據中,發現參宿四表面平均溫度比 2004 年的測量低了 50 至 100 度,這個結果使他們更加確定其答案必為星際塵埃,若是對流胞上升至表面冷卻的話,那降幅會更為明顯。

科學家宣稱在隕石中發現了外星蛋白質

血石素的結構。圖/arXiv

繼默奇森隕石發現胺基酸以來,在 1990 年的一塊隕石中,隱藏了更具突破性的進展,蛋白質一般是由多個胺基酸組成的,同時也是地球上幾乎所有生物體中的必要組成成分,從細胞核膜到遺傳物質 DNA 都有蛋白質的身影。在這被稱為「Acfer 086」的隕石所含有的蛋白質,被稱為血石素 (Hemolithin) ,是一種新的命名,旨在描述其具有一半血紅素 (Hemoglobin) 及一半卵磷脂 (Lecithin) 的分子結構,科學家發現的這種新蛋白質,成分中含有鐵和鋰,且氘與氫的比例與地球上的不同,基本上可以確認絕非地球上的物質。儘管研究團隊認為這是最有可能的解釋,但是他們也指出其發現的複合性分子可能不是蛋白質,而只是一種聚合物,所以現在下結論仍為之過早,但是種種跡象顯示「它」是蛋白質的機率相當高。

宇宙最早的物質可能潛藏於中子星的核心

藝術家對於中子星剖面的想像圖。圖/轉自《臺北星空》

中子星是恆星死亡後的核心塌縮而形成,中子星的質量上限約在兩個太陽質量,更大的質量將會形成黑洞,然而最近天文學家發現了少數超過這個上限的中子星。

研究團隊計算了中子星物質的狀態方程式,計算的結果描述了中子星的可能結構。結合最近 LIGO 和 VIRGO 的重力波觀測結果,更進一步揭露了許多中子星內部的訊息。根據他們的研究,這些死亡恆星的中心可能可以找到由夸克形成的核心,其含量甚至可能佔核心組成的一半以上,未來更多的中子星觀測資料將可提升或改善這項研究結果的正確性。

銀河系中也許有至少 36 個外星高等智慧文明存在

除非人類能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則無法與任何外星文明聯絡。圖/轉自《臺北星空》

繼德瑞克方程式後,人類就一直持續在搜尋地外高等智慧文明,但長時間以來一無所獲,新的研究認為該方程式的後面幾項參數,不確定值太多,使得整個方程式的實用性降低,研究人員建立了一套新的參數及計算標準,稱為天文生物學哥白尼極限,在六種嚴格的限制條件下,得到的外星文明數量約為 36個。

若將此 36 個外星文明平均打散在銀河系中,可以得到每個文明的平均距離至少有 17,000 光年,而人類自有無線電訊號以來,也才 125 年,亦即最遠的傳播僅達125 光年,此外,無線電波在傳遞過程中也會逐漸變弱,因此,除非我們能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則我們仍無法與任何外星文明聯絡。

首次發現奇怪的冥府行星

冥府行星示意圖。圖/轉自《臺北星空》

天文學家發現一顆非常奇怪的系外行星 TOI-849b ,它位於 730 光年遠,母恆星TOI-849 與太陽非常相似。 TOI-849b 僅比海王星小一點,但質量卻是海王星的兩倍多,因此密度與地球差不多!如此高密度顯示它是岩質行星,但大小卻遠高於岩質行星的上限。這意味著它可能是非常罕見的冥府行星(Chthonia),即是大氣層已被剝離的氣體行星核心。

天文學家認為這種極靠近恆星的氣體行星,會被高熱剝離大氣,如 Gliese 3470 b 被觀測正以高速失去其大氣層。但這不足以解決 TOI-849b 大氣全部損失的原因,還有大天體碰撞等事件的可能性。另一可能原因是 TOI-849b 開始形成氣體行星時,沒有足夠的物質成為大氣。又或者是它在行星系統演化後期時形成,抑或是在原行星盤的間隙中形成的,使得沒有足夠的材料來增加大氣。研究小組計劃將繼續觀測,以確定 TOI-849b 是否還剩下任何大氣。

天文學家在本超星系團旁發現了新的長城結構

紅色區塊屬於南極長城。圖/轉自《臺北星空》

宇宙的結構並不是由隨機分佈的星系所組成,而是互纏互繞、具有藕斷絲連的特性,受到萬有引力的影響,較為靠近的星系組合成一個星系群或星系團,或隸屬於一個超星系團,這些藕斷絲連的網狀結構,又被稱為大尺度纖維狀結構,其中最大的一條被稱為武仙-北冕座長城,全長跨越 97 億光年,是目前已知最巨大的結構。新發現的纖維狀結構橫跨南極天空,至少長達 13.7 億光年,發現者將其命名為「南極長城」(South Pole Wall) ,而且南極長城的特別之處在於它離銀河系非常近,簡直就像是在我們的後院而已,僅有5億光年遠,(我們所在的結構稱為拉尼亞凱亞超星系團,直徑達5.2億光年,所以5億光年確實就像是後院的存在)換句話說,它是離我們最近的長城結構。

迄今為止質量最大的合併事件證實了中介質量黑洞的存在

一對黑洞的合併產生新重力波的觀測事件,證實了中介質量黑洞的存在。圖/轉自《臺北星空》

在 70 億光年外,一對碰撞的黑洞產生了新的重力波,在 2019 年 5 月 21 日由 LIGO 和 VIRGO 雙重認證得知,這次的重力波事件是黑洞天文學中最受囑目的發現之一,因為該天體質量介於恆星級黑洞及超大質量黑洞之間,正是天文學家急欲尋找的中介質量黑洞,且我科技部及清華大學研究團隊亦參與其中。本次的重力波訊號與往常的訊號相比非常短,但經過艱困的比對分析後,科學家得知這是分別由 66 倍太陽質量及 85 倍太陽質量的黑洞合併而成,產物為一個約 142 倍太陽質量的黑洞,這是自發現重力波以來迄今為止最大質量的重力波源。

中介質量黑洞是黑洞系列的一個謎團,我們常發現的是恆星質量黑洞及超大質量黑洞,但是藉由重力波的觀測, GW190521 成為對於中介質量黑洞的第一次決定性的直接觀測。超大質量黑洞的形成過程仍是個謎,長久以來,科學家不清楚它們是由恆星大量坍縮聚集而成,抑或是透過一種尚未被發現的方式產生的,所以科學家一直在尋找中介質量黑洞,來填補介於兩者差異甚大的質量空隙,如今,科學家終於有證據可以證明中介質量黑洞確實存在。

歐西里斯號成功登陸貝努收集樣本

OSIRIS-REx 收集樣本示意圖。圖/轉自《臺北星空》

OSIRIS-REx 任務耗資 8 億美元,在 2016 年 9 月發射, 2018 年 12 月 3 日抵達500 公尺大的貝努近地小行星。經過一年多環繞研究後,團隊選擇了一個名為夜鶯(Nightingale)的小隕石坑為降落地點,因為該點表面物質的顆粒較細,且相對新鮮沒經過長期暴露於太空環境而變質。但夜鶯周圍也充滿危險,其中包括要經過一個兩層樓高,綽號厄運山(Mt. Doom)的巨石,而隕石坑內也有其他障礙物,因此太空船的目標是一個寬 8 公尺相對平坦無石塊的區域, OSIRIS-Rex 任務距離達3億公里之遙,相當不容易。臺灣本地時間 10 月 21 日 6 時 12 分歐西里斯號(OSIRISRex)號降落到近地小行星貝努(Bennu)表面,目標是從貝努表面收集至少 60 克的灰塵和碎石,預計 2023 年 9 月 24 日將樣品送回地球,以研究太陽系的起源與生命相關有機物和水的來源。中間還有一段插曲:一些岩石碎塊阻擋導致收集器無法完全閉合,使得在探測器的三公尺機械手臂末端的收集器內的小行星表面碎片樣本,一直在緩慢漏失到太空中,好在後來已經克服此狀況,且收集來的樣本也遠高於當初設定的最低目標。

阿雷西博望遠鏡的輝煌與終結

曾完成多項偉大天文學研究的阿雷西博天文臺,因結構損壞而除役。圖/轉自《臺北星空》

該望遠鏡於 1963 年落成啟用,阿雷西博天文臺開始運作之後,做出的科學貢獻不勝枚舉。 1964 年天文學家藉由雷達脈衝發現水星的自轉週期為 59 天,有別於原先認為的 88 天;1968 年提供了蟹狀星雲脈衝星(Crab Pulsar, PSRB0531+21,自轉週期33毫秒)存在的確切證據,也是第一顆被確認為跟超新星殘骸有關的中子星。 1974 年,天文學家法蘭克德瑞克及卡爾薩根設計了知名的阿雷西博訊息,內容包含人類的 DNA 結構,和太陽系的介紹等等,以強力的電磁波從阿雷西博天文台發送向距離地球 25000 光年的球狀星團 M13。雖然無法期待在不久的將來能收到回覆,卻是人類主動接觸外星文明的重要嘗試。 1989 年趁著小行星(4769)Castalia 經過,阿雷西博望遠鏡首次利用其功能描繪出小行星的 3D 圖像,迄今已研究過數百個近地小行星。今年的 12 月 1 日的一聲巨響,支撐平台的纜線應聲斷裂,整個接收平台、900 噸重的心臟與一個纜線塔硬生生撞入下方的碟型天線。雖然造成多大破壞還在評估,但照片與影片仍然震驚所有人,阿雷西博望遠鏡結束其 57 年傳奇的一生

嫦娥五號返回艙帶回月壤, 40 年以來的新鮮貨

中國嫦娥五號於去年年底返航,完成人類 40 年來首次收集月球樣本的任務。圖/轉自《臺北星空》

歷經 23 天的飛行,攜帶著月壤的中國嫦娥五號返回艙於 12 月 17 日凌晨 1 時 59 分安全返回地球,這是 40 年來首次收集月球樣本的任務。其返回艙在中國北部內蒙古四子王旗著陸場著陸。內蒙古地區夜間達攝氏零下 30 度,對於地面工作人員的準備是一大考驗。

嫦娥五號於 12 月 1 日登陸月球,並於兩天後開始返航,中國航天局也在月球上,升起了中國五星旗幟。此次任務是自 1976 年蘇聯「月球 24 號」任務以來的首次嘗試,使中國成為繼美國和蘇聯之後,第三個從月球上取回樣本的國家。飛船的任務是在「風暴洋」的區域收集兩公斤 (4.5磅) 的物質,該區域是一片廣闊的、此前尚未被探索過的熔岩平原。

中國的科學家們希望藉由採集回來的樣本了解月球的起源、形成以及月球表面的火山活動,並期望在 2022 年以前建立一個載人太空站,並最終將中國人送往月球。

臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!