0

0
0

文字

分享

0
0
0

人腦控制的挑戰

Y. M. Huang
・2013/08/02 ・1216字 ・閱讀時間約 2 分鐘 ・SR值 532 ・七年級

國小高年級科普文,素養閱讀就從今天就開始!!
(取自Amazon.com,附上產品連結應該不是侵權吧)

近年來,隨著科技的進展,一些號稱腦波控制的產品陸續問世,但這些產品需要解決那些問題呢?上圖是一個實際的產品,但在網路上評價普通。下圖則是一個號稱用腦波控制貓耳朵來表達個人現狀的產品

首先,腦波記錄到的是在頭殼上的接受器所接收到的訊息,所以訊息其實是相當複雜的,也不太能區分究竟是哪個區域所傳遞出來的訊息。用功能性磁振造影儀可以定位出涉及特定活的腦區,但用腦波儀則較無法進行精確的定位,換言之沒有辦法透過腦波的來源來定義大腦所欲執行的功能。當然這個問題也不是不能解決的,因為可以用複雜的運算方式,長期追蹤紀錄進行某個特定活動時,諸多接受器接收到那些訊號,透過一些運作式,還是進行一些預測。

第二,因為我們處在外在環境複雜的世界,如果確保我們每次只做一件事情,這是相當困難的。即使快速的轉換注意力,可能也會對所記錄到的腦波造成影響,那運算式該怎麼去排除這樣的可能性呢?在實驗室中,我們當然可以降低外在刺激,但我們沒有辦法控制實驗參與者真的只想一件事情,所以實驗室內的結果,要類推到真實情境也會有一些挑戰。

再者,人在進行某個作業的時候,腦部活動一定是不變的嗎?很多研究發現人腦有快速的習慣化過程,也就是說同樣的刺激若短時間內重複出現,則對該刺激有反應的腦區,活化會快速的下降,但這個刺激還是同樣的被處理了。換言之,腦部的活動是會改變的,倘若如此,腦波儀器的運算式也要不停地去改變規則,否則就會做了錯誤的預測。

Wander等人在2013年研究一群有癲癇症的病人,他們都因為患有癲癇需要打開腦殼放置一些電極在腦中,這些電極能協助醫師判斷他們癲癇發作的區域。在這研究中,研究者也利用這個電極來記錄受測者學習一個電腦操作時的腦部活動變化,在行為層次,受測者最後的表現都比一開始來的好。此外,研究團隊也發現這些病人腦部活化的區域有明顯的變化,特別是前額葉、運動區、後頂葉在後期都比一開始有較低的活化。所以,運作式要如何客製化,如何根據每個人的學習曲線來改變,會是一個相當大的挑戰。當然,如果腦波變化只是要做簡單的判斷(例如判斷是或否之類的),那應該是沒有太大的問題。

Wander等人(2013)的研究因為可以實際紀錄腦內的變化,所以可以清楚看到大腦活化型態的改變。至於這樣的改變在一般利用腦殼上的接受器上是否可以看到,這無法不確定…… 但很有可能,未來我們的大腦都會被植入一個晶片,直接由內部控制。很多科幻電影,例如魔鬼終結者、駭客任務,不都是這樣演的嗎?我們或許離那一天不會太遠……

去看研究的原文 Distributed cortical adaptation during learning of a brain–computer interface task

去看主要研究者Jeremiah D. Wander的網頁,Wander教授主要研究的議題都是和腦部活動有關係的,特別是透過電腦介面互動產生的刺激,如何影響不同腦部區域的活動。

文章難易度
Y. M. Huang
95 篇文章 ・ 3 位粉絲
輔大心理系副教授,主要研究領域:探討情緒與認知之間的關係、老化對認知功能的影響、以及如何在生活中落實認知心理學的研究成果。 部落格網址:認知與情緒新聞網 (http://cogemonews.com)

0

4
1

文字

分享

0
4
1
醫生開刀時,大腦的同理心訊號超弱?別緊張!同理心是可以調節的——專訪國立陽明交通大學神經科學研究所特聘教授 鄭雅薇
PanSci_96
・2023/01/10 ・4050字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

你有想過可以透過腦波,研究人類的同理心是怎麼運作的嗎?

小時候老師常說,「人之初,性本善」,這件事的真假可以透過科學驗證嗎?(摸摸自己的良心,就問你怕不怕)

讓我們從「社會認知神經科學(Social Neuroscience)」出發,或許可以給你一個想像不到的答案。

什麼是「社會認知神經科學」?

2000 年,美國心理學家 John Cacioppo 開始研究人類的「寂寞感(loneliness)」,專注於討論寂寞感對人身心健康的影響。「社會神經科學(Social Neuroscience)」、「社會認知神經科學(Social Cognitive Neuroscience)」一詞也因此誕生,一個嶄新的研究領域,就此展開。

美國心理學家 John Cacioppo,開創了社會神經科學的領域。 圖/wikmedia

近似於認知神經科學( Cognitive Neuroscience),都是研究人類的心智,惟社會認知神經科學特別聚焦於「社會(social)」上,探討社交互動時人類心智的運作。

因為社會互動的複雜性,這也是一門跨領域的學科,範圍包括社會心理學、發展心理學、哲學,或甚至數學或醫學等。

如何看到「同理心」?同理心研究的起源

人類對於同理心的好奇心一直沒有停過,但同情心沒有實體,他深藏在我們的內心,科學家要如何才能測量跟觀察呢? 2004 年,德國心理學家 Tania Singer,想到透過功能性磁振造影(fMRI)來「看」同理心。

德國心理學家 Tania Singer,開啟了透過腦神經網絡研究同理心的先河。 圖/wikipedia

有別於以往用問卷去蒐集相關的資料,為了要有明顯的實驗標的,研究團隊選擇用「痛(pain)」這個刺激,並找來他們認為同理心最強的實驗人選——大學裡熱戀中的女生。他們請受試者躺在 fMRI 裡,先想像自己被電,再來看著幾何圖形想像自己的男朋友被電。

Tania Singer 等人觀察到,受試者想像自己被電,與想像男友被電時,腦中有部分重複產生反應的區域,前腦島(anterior insula)與前扣帶皮層(anterior cingulate cortex),她認為那就是人類的「同理心」。

但是他們也同時發現,當受試者想像他人被電時,大腦中感覺皮質,並沒有像自己被電時一樣產生反應。因此他們認為,當我們面對他人疼痛時,只能同理他的難過感受,並沒有辦法同理他的疼痛強度。

雖然這樣的結論,還有很多待討埨的地方,但  Tania Singer  用「痛」做的研究成為了一個很好的範例。科學家們受到啟發後,開始進行各種觀察自我疼痛與他人疼痛之間大腦反應的實驗(開始到處戳人)

編按:之後,發表在《Nature Neuroscience》的義大利的團隊,利用穿顱磁刺激儀(TMS,Transcranial magnetic stimulation)重新去驗證看見他人疼痛時,感覺皮質是否真的不會參與?

這次他們直接讓受試者看到別人被針扎,以及被棉花棒碰一下。結果發現當受試者看到別人被針扎時,大腦的感覺皮質產生的電位下降比較大,相對于棉花棒,電位變化就沒有那麼大。代表我們對於他人的疼痛程度,還是可以同理的。

導致兩個實驗結果不同的影響原因,有可能是 Tania Singer 是請受試者看著符號想像別人被電,而並非真實到看被刺痛的影像。

這些看到他人疼痛,就會產生反應的腦區,就是人類平常處理同情心的地方嗎?但我們的大腦中,其實並沒有特定的區塊專門處理同理心。

這些看到他人疼痛,就會產生反應的腦區,就是人類平常處理同情心的地方嗎?但我們的大腦中,其實並沒有特定的區塊專門處理同理心。圖/pixabay

大部分人都會直覺性的認為,大腦的每個部分都有特定的作用,各司其職,但可惜事實往往沒有想像中那麼簡單。

首先因為實驗中大部分都是用痛覺的刺激來做實驗,所以研究人員也就不約而同看到這些位置。這背後代表了,這些區域的工作可能也包含了我們對痛覺的反應與處理。

再者,人類的大腦功能多樣,但大小有限,所以每個腦區其實都是多工的。因此在研究中也會發現,這個腦區可能同時處理社交互動、決策,或者情緒之類的。

除了以上這 2 個原因之外,或許我們還需要問問「同理心是什麼?」

共感=同理心嗎?「情感同理心」與「認知同理心」

2006 年,有科學家發表了鏡像神經元(Mirror neurons)這個詞 ,表示大腦中的前運動皮質與頂下小葉(Inferior parietal lobule)這兩塊偏管理動作的腦區,在看到別人做動作的時候也會有反應,就像兩個小朋友在玩模仿遊戲(Mirror game)一樣。

在看到別人做動作的時候也會有反應,就像兩個小朋友在玩模仿遊戲一樣。圖/giphy

有許多人也認為,鏡像神經元的機制可以完美的解釋,為什麼人可以理解另外一個人,甚至人與人之間是因此才有辦法進行社交互動。

但也有另一派人認為不是如此,他們太小看人類了,人沒有那麼簡單,同理心也應該是更為複雜的機制。

因此目前世界對於同理心的解讀分成了兩派,一個就是傳統上的「情感同理心」,或者稱之為共情。另外一派則認為同理心的機制應該更加複雜,在情感同理心之外,應該還有「認知同理心」參與,幫助人類設身處地推論、解讀他人的狀態,這背後也隱含了心智理論(Theory of Mind,縮寫為 ToM),對方的行為、意圖與心理都是理解的範圍。

同理心的機制,真的就是上面這樣了嗎?鄭雅薇教授的研究提出了另一個答案。

醫護人員的「同理心」比較弱?

一開始,鄭雅薇教授找來了針灸科醫師為實驗對象——一個常常在扎人與看別人被扎的職業,她發現當受試者在工作時,他的前腦島與前扣帶皮層都沒有太大的反應,有反應的反而是負責控制的前額葉。

這代表醫療人員比較冷血,沒有同理心嗎?

其實並沒有,因為醫生填同理心的自評量表結果,與控制組是一模一樣的。這表明醫療人員也是充滿同理心的,只是他在面對專業時,必須收起自己的同理心。

針灸科醫師在工作時,他的前腦島與前扣帶皮層都沒有太大的反應。圖/elements

所以,「同理心是我們可以控制的嗎?」從這個問題出發,鄭雅薇教授發現了在腦神經網絡中,也就是認知同理心與情感同理心之間存在一套調控機制。

為了更深入了解同理心的調節機制,鄭雅薇教授將研究對象的範圍擴大,從針灸科醫師延伸到護理師,發現了環境是一重要影響因素。當在醫院工作時,共情反應通常較低,但回到家後,共情的反應比較大。

鄭雅薇教授認為,認知同理心會去控制我們,在面對不同環境、不同對象的情況下,表現出不同的同理心的反應。比如當護理師在幫病人打針時,為了不讓自己過度共感而妨礙工作,她必須要把同理心收起來。同樣的,當外科醫師在幫病人開刀時,要是太過同理對方的感受,手術刀會更難劃下去。

從鄭雅薇教授的研究中,我們可以看到同情心的運作其實比你想像的更複雜。 圖/鄭雅薇教授提供

相反的,若是病人在恢復室內,還沒有完全恢復,如果醫師沒有設身處地去理解他可能哪裡有狀況,有時候就會忽略掉身體出現的一些狀況。或者是身心科醫師,如果他沒有十足的同理心,會很難偵發掘到病人非常微細的一些變化。

由此可見,同理心並不是一種單純的反射,背後隱藏一串複雜的調控機制。

但既然同情心如此複雜,需要認知同理心與情感同理心互相配合,那如果有人缺少其中一項會怎麼樣呢?

情感同理心是天生,但認知同理心是後天養成

從發展的角度,鏡像神經或者是情感同理心那一塊,我們一出生就有了。比如說,醫院的育嬰室如果有一個小孩哭,很快其他小孩也會哭成一片。但認知同理心的發展比較慢,因為其中還包含了心智理論,所以通常在 3 歲後才會慢慢發展成熟,有時候甚至到 10 歲才能趨於發展成熟。

醫院的育嬰室如果有一個小孩哭,很快其他小孩也會哭成一片。圖/elements

過去有許多人認為自閉症就是缺乏情感同理心,因此社交能力不好,眼睛也會不看人,或是目光接觸時會非常閃爍。鄭雅薇教授為此研究,結果發現自閉症患者是有情感同理心的,反而甚至有點太過。

跟健康組比起來,自閉症的情感同理心沒有什麼不同,但相對他的認知同理心是有困難的,所以他才會刻意去迴避別人的情感與眼神,因為少了認知同理心的調控,他人的情感對他而言會是無法承受之重。

既然缺乏認知同理心,會產生類似自閉症患者的反應。那缺乏情感同理心呢?

如精神變態、冷血殺手(psychopathy),是他無法將對方的痛苦與自己的痛苦連結,因此他對他人的遭遇比較冷感。在情感同理心缺乏的情況下,他們在認知同理心往往表現的很好。等於他雖然無法同理你的感受,卻能清楚知道你的處境。這也導致他們冷血,在傷害別人甚至是犯罪時,冷血,難以產生罪惡感。

但這不代表對痛覺比較不敏感的人,或者情感同理心較低的人就會缺乏同理心。有研究團隊就針對天生沒有痛覺的人實驗,發現他們的情感同理心反應雖然比較低,但在認知同理心上反應比較高。這也代表,情感同理心並非是認知同理心的基礎,這之間互相機制相當複雜。

透過腦波看一看,原來同情心這麼複雜

從整個同情心的運作機制來看,並不是只有「看到你哭,所以我哭」這麼簡單,後面其實還隱藏著一套後天發展的心智理論存在。情感同理心與認知同理心的相互作用,才是形塑我們同情心的核心,也才能讓我們在感知這個世界的同時做出回應。

PanSci_96
1166 篇文章 ・ 1513 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

12
3

文字

分享

1
12
3
閱讀障礙與注意力缺失是哪裡卡關?──觀察腦電波解析大腦處理語言的奧秘!
研之有物│中央研究院_96
・2021/10/11 ・5704字 ・閱讀時間約 11 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|陳毓豪
  • 美術設計|林洵安

每個孩子都是父母心中的寶貝,但對於閱讀障礙與過動孩童而言,成績低落、學習不專注是常有的事。大腦研究可以幫助我們釐清背後的成因嗎?「研之有物」專訪中研院語言研究所李佳穎研究員,她的專長為神經語言學,透過腦造影技術,探討大腦與語言處理的關係。腦波研究如何幫助我們了解語言學習及認知發展呢?來聽聽李佳穎怎麼說!

解鎖大腦處理語言的奧秘

語言,是人類溝通、學習和知識傳承的基礎,但我們究竟是如何從牙牙學語到熟悉多種語言呢?英文有子音、母音,中文也有不同聲調,大腦怎麼區別不同語音?

這些是「神經語言學」的內容,也是中研院「大腦與語言實驗室」的研究重心。李佳穎研究團隊透過大腦的腦波反應,試圖解鎖大腦與語言處理的奧秘,希望進一步找出影響孩童閱讀發展與注意力障礙的關鍵機制。

「腦波的研究已經一百多年。」李佳穎將腦波原理娓娓道來,「大腦由很多神經元組成,這些神經元透過神經傳導物質及電的作用,相互溝通訊息。」想要研究大腦如何處理語言,一般不是直接把探針插在大腦神經元做侵入式量測,而是讓受試者戴上多個電極的帽子,從頭皮上以非侵入式、不影響大腦運作的方式量測。

腦波觀測就像量測心電圖一樣,只要有兩個電極放在大腦頭皮上,便能量測到隨著時間的電位變化,也就是腦波圖(EEG, Electroencephalogram,以下簡稱腦波)。人類在專注、放鬆、睡眠等不同的狀態下,腦波會呈現出不同的頻率組合。

量測腦電波時,受試者需要戴上多個電極的帽子,以非侵入的方式量測頭皮電位。圖/iStock

在研究與臨床上,腦波圖也常被用來計算「事件相關電位」(Event related potential, ERP),了解特定事件(例如認知、語音知覺或閱讀等)是否能誘發出特定的腦波型態。

例如,「新生兒聽力篩檢」就是常見的聽覺事件 ERP 臨床應用。透過量測新生兒接收聲音刺激後, 10 毫秒內的腦波反應,就可以知道寶寶大腦的聽覺反應是否正常、有無聽損。檢查的過程中,新生兒不需要有行為反應,睡覺也沒關係。

腦波不僅可用來解答語言或認知歷程的基本問題,也可應用在臨床或教育上。

檢測嬰幼兒語音知覺的腦波──MMN

從量測到的事件誘發電位,科學家只要知道電位振幅強度波峰發生時間點以及在頭皮上分布的狀態這三個重要資訊,就可以像氣象局預估地震震央一樣,透過數學模型推估神經元活化的起源(generator),解答語言與認知歷程的問題。

李佳穎團隊解開閱讀障礙與注意力缺損之間的關係,即是使用:聽覺事件相關的腦波 MMN(Mismatch negativity,不匹配負向波)。MMN 是什麼呢?它是大腦偵測到聽覺刺激改變時,會自動產生的電位變化。

試著想像,當你聽到高昂尖叫、低頻狂吼,是不是會有不同感覺?腦波反應也是。當大腦偵測到不同頻率的聲音變化,頻率差異越大,引發的 MMN 負向振幅就會越大,電位變化的時間點也越早。

那麼,MMN 可以發揮什麼關鍵功能呢?MMN 振幅大小和發生時間點,能反應出人類對聽覺差異的自動感知區辨能力。此外,紀錄 MMN 腦波資料時,受測者只需要被動地聆聽,不須對聽覺刺激進行任何行為判斷,因此這個腦波指標很適合用來測試無法配合指令要求的族群,像是嬰幼兒、特殊疾病的族群。

目前, MMN 被廣泛用在嬰幼兒語音知覺發展的研究,而且研究已發現,從嬰幼兒的語音發展及語音知覺表現,可以有效預測這些孩子日後的閱讀能力!

時間一天一天走,語言敏感度一點一點消失

芬蘭曾有一項知名研究,研究者想知道:不同母語的嬰兒,語音區辨力有什麼不同?

研究者以芬蘭與愛沙尼亞的嬰兒來做比較,觀測他們聽到不同語音時的 MMN 腦波振幅,判斷嬰兒對愛沙尼亞語特有母音 [õ] 的辨別能力。結果發現,芬蘭嬰兒在 6 個月大時,雖然生活中不會聽到這個母音 [õ],仍對它有很好的辨別力。但到了 12 個月大,芬蘭嬰兒對於非母語 [õ] 的辨別敏感度就顯著降低了!這項研究顯示:

即使不是母語會出現的音素,孩子都有與生俱來的辨識力,但這種天賦會逐漸「關上門」。

隨著語言學習的過程,我們對母語中不存在的音素會漸漸失去敏感度。

中文閱讀障礙孩童的關鍵:對聲調變化較不敏感

每種語言具有不同的語音特徵,因此李佳穎實驗室近年也運用 MMN ,探討中文母語者的語音知覺發展,以及檢驗語音改變時,MMN 與中文閱讀能力的關係。

以中文聲調為例,幼童或初學中文做第二語言的外國人,常常分不清楚二、三聲。這是因為二、三聲調的物理屬性(不論是起始頻率或隨時間變化的基頻),比一、三聲的差異來得小。研究團隊也以一三聲、二三聲的 MMN ,觀測不同受試對象的腦波反應。

李佳穎首先以大學生做實驗。比起一、三聲調變化,成年受試者在二、三聲差異變化時,引發的 MMN 振幅較小,發生時間也比較晚,表示成人大腦能順利區辨這些聲調。

不過,對於小學一年級和二年級的孩子,一、三聲調 MMN 負向振幅很大,二、三聲調的 MMN 卻是一個正波,顯示他們對二、三聲還沒有自動區辨能力,直到五年級後,才穩定下來。此外,識字量越高的孩子,所測得二、三聲調的 MMN 振幅越負──代表識字量越高,對聲調的敏感度越高。

低年級的孩子,一、三聲調 MMN 負向振幅很大,但二、三聲調的 MMN 卻是正波,顯示他們還沒有自動區辨能力,一直要到五年級以上才會穩定下來,接近成人。圖/研之有物、iStock

研究團隊再針對閱讀障礙的孩子進行量測。結果發現,閱讀障礙孩子的 MMN 反應和低年級孩子類似,對二、三聲的 MMN 反應不敏感。這和過去認為,他們是因為看文字、視覺區辨有困難而產生閱讀障礙,有些不同!

閱讀障礙孩子對聲調的敏感度較弱,若用語音來學習文字可能容易卡關。

實驗結果找出了閱讀障礙的學習關鍵,有助於未來鑑別或幫助閱讀有困難的學童。

李佳穎表示,從這些研究發現可知,MMN 能反映大腦對語音的敏感度,並且與閱讀發展息息相關。未來,若能建立區辨中文語音的 MMN 發展資料庫,就可做為早期鑑別語言與閱讀障礙的神經生理指標。

兩者在一、三聲調的 MNN 差別不大。但對於二、三聲就有差別,閱讀障礙兒童的振幅在 200 毫秒之前幾乎是正波,這顯示他們的聲調敏感度較不好。資料來源/李佳穎

孩子是注意力不足還是閱讀障礙?腦波會說話!

學習障礙的孩子裡,除了閱讀障礙、語言障礙,另一個常見的狀況是:注意力缺失。

許多過動症(attention deficit hyperactivity disorder, ADHD)的孩子,因為注意力不足,常常會伴隨著學習困難;但閱讀障礙兒童跟不上進度,往往也難專注。因此,老師或家長在兩者評估上經常遇到困難。

不過,李佳穎發現,注意力缺失與閱讀障礙的孩子,在偵測聲音刺激變化的腦波反應不太一樣。

偵測聲音變化時所引發的 MMN ,是一個反應大腦自動偵測聽覺訊號差異的腦波成分,這個階段的反應,並不需要注意力的介入控制,也就是發生在前注意力階段(pre-attentive stage)。即使在嬰兒睡覺、孩童看巧虎的時候進行測量,大腦也會自動偵測聲音聲調的變化。

MMN 的腦波振幅出現得比較早,在 MMN 的波形發生後,通常還有另一個腦波成分叫做 P3a, 這是一個在「差異音」出現 300~600 毫秒後所引發的事件誘發電位。P3a 振幅會受到注意力資源分配(例如差異音出現的比例)影響。因此,P3a 反映的是不自主的注意力導引能力。

李佳穎研究發現,在一、二、三聲差異音比例為 0.1:0.1:0.8 的情況下,閱讀障礙的孩子 MMN 指標即出現問題──閱讀障礙孩子「前注意階段」的語音敏感度比較差。但如果是過動兒,MMN 指標跟一般孩子並無差異,主要是 P3a 出現問題──過動兒在「不自主的注意力引導階段」反應較差。

比起一般孩子,過動兒一、三聲的 P300 反應明顯較弱,這也顯示 ADHD 孩子大腦處理注意力的歷程,與正常孩子有所不同。研究也發現,P3a 的振幅與注意力行為評估量表的分數有顯著相關。

不同腦波成分,會反應不同的大腦機制。與音調敏感度有關的 MMN , ADHD 兒童和一般孩子差不多;但與注意力有關的 P300, ADHD 孩子反應明顯較差。資料來源/李佳穎

總結來說,閱讀障礙的孩童在 MMN 腦波反應,也就是前注意力階段的語音敏感度出現問題。過動孩童的 MMN 反應和一般孩子差不多,但是 P300 反應較弱,也就是處理注意力的歷程比較差。

從 MMN、P300 兩個不同的腦電波成份(component)研究顯示,腦波能反應出大腦內在語言、認知處理歷程。MMN 反應的是聲音敏感度,P300 反應注意力的歷程,對於未來在孩童學習障礙的臨床鑑定上,將提供重要的幫助。

李佳穎希望能持續蒐集更多個案的常模,協助做出注意力不足過動症、閱讀障礙的鑑別診斷,也能進一步做更多不同範疇的臨床應用。

從語言學角度,建議讓孩子提早學習雙語嗎?

全世界的子音和母音有 600 多個,可是每一個語言大約只用到 30 到 50 個語音。我們的大腦神經元在出生後會不斷蓬勃發展,神經元之間的連結也會隨著經驗連結,持續開闢出新道路;但同時,沒有經驗或不需要的神經元也會被修剪掉。

前面提到的芬蘭研究,嬰兒一開始對任何語音差異都能區辨或偵測,但是透過神經網絡(neural network)的學習後,反而逐漸喪失這種能力。這種例子很常見,就像許多講台語的長輩分不出國語的「發生」和「花生」,因為台語沒有ㄈ、ㄏ;日語母語者則是無法區分 r、l;而我們學英文也有極限。

這些例子,都是因為大腦將用不到的神經連結修剪掉,也就是大腦可塑性。

因此,可以提早讓孩童在自然環境中接觸語言,累積經驗值。口語詞彙是閱讀能力的根基,但不管是母語或第二語言,都不用急著讓孩童學習文字。

還沒上學之前,家長可以透過講故事,累積孩童的語音敏感度與詞彙量,作為未來閱讀發展的根基。如果要強調第二語言,也可以在遊戲、自然互動中建立語感,不用一開始就教閃卡、背單字、寫字,因為書寫涉及視、知覺和動作的協調,也與小肌肉發展有關,不必過早介入教導。

對閱讀障礙孩童的家長,有什麼建議?

語言的傳遞有聽、說、讀和寫。文字的發展,讓訊息有不同的溝通模式,也加速了知識傳承。但對閱讀障礙的孩子來說,以文字做為獲取知識的媒介是較困難的。

知識不一定只能透過文字傳播。如果孩子在文字形式的吸收有困難,也可以採用有聲或多媒體等方式來學習或評量,建立信心。他們閱讀能力的發展斜率或許比一般孩子緩慢,但還是會進步。如果因為經常失敗而扼殺了興趣和動機,反而更不利於小孩的學習發展。

上學不只是為了學習文字、閱讀能力,而是幫助孩子獲取知識。閱讀障礙不代表不能學習,更不代表人生是黑白的!許多優秀的人都有閱讀障礙,例如知名歌手蕭敬騰、新加坡前總統李光耀,都是好例子。

我們語言與大腦實驗室也做了好幾組遊戲,希望透過不同的形式,幫助學習困難的孩子,從互動遊戲來累積語言經驗。像是 「注音冒險王」,已經上架 Android 和 iOS 雙平台提供下載。

李佳穎團隊結合神經語言學,為台灣學童開發多款識字教學遊戲。目前的三款 APP(每日腦點心、注音冒險王、收割季節),都可免費下載,在疫情期間也提供雙北特教老師使用,作為學習障礙學童的線上課程,老師還可以從後台了解學習狀況。圖/大腦與語言實驗室網頁

為什麼會從語言學研究,發展到教育應用?

我原本研究非常基礎的腦神經科學,最大的研究動力是為了滿足學術上的好奇心,原先沒想過會投入臨床或教育方面的應用。

過去,我找了一些閱讀學習困難的孩子當受試者,家長報名很踴躍,因為他們很想知道孩子究竟怎麼了,該怎麼協助。每次實驗後,父母都很關心能為孩子做些什麼。但我發現:我根本沒辦法幫助他們,他們只是來幫我做實驗!

這讓我慢慢思考,只提供施測並不夠,應該想辦法回饋這些孩子和家長。

一開始,我沒辦法直接幫到孩子,所以決定先做出中文的字詞資料庫,提供資源讓特教老師設計學習單。後來,我開始四處演講,分享語言學習、閱讀學習的歷程,漸漸有特教機構和鑑定機構找我協助,也因此跟教育現場的老師有更多互動,更了解不同學習障礙類型的需求及鑑定上的困難。

特教老師很忙,從「知道理論」到「可以使用」也仍有一段距離,所以我們開始進一步規劃輔助教學應用軟體。通常,第一版原型由實驗室自己研發設計,之後再和專業工程師討論,一步步發展。很幸運有長期支持的團隊,讓我們不只做基礎研究,還可以設計免費學習 APP 回饋社會。我也期待有更多生力軍加入大腦與語言實驗室,一起為臺灣的腦科學與教育應用努力。

延伸閱讀

  1. 「語言使用」和「大腦」的關係是…? 專訪李佳穎
  2. 中研院語言學研究所──大腦與語言實驗室
  3. Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brainNature Neuroscience1(5), 351–353.
  4. Lee, C. Y., Yen, H. L., Yeh, P. W., Lin, W. H., Cheng, Y. Y., Tzeng, Y. L., & Wu, H. C. (2012). Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia50(14), 3228–3239. 
  5. Sams, M. (1983). Sequential effects on the ERP in discriminating two stimuliBiological Psychology17(1), 41–58. 
  6. Yang, M. T., Hsu, C. H., Yeh, P. W., Lee, W. T., Liang, J. S., Fu, W. M., & Lee, C. Y. (2015). Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children. Frontiers in Human Neuroscience9.
所有討論 1
研之有物│中央研究院_96
271 篇文章 ・ 2666 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

3
2

文字

分享

1
3
2
破譯腦波的秘密:你會百發百中還是彈彈落空?腦波可能都知道!
活躍星系核_96
・2020/12/13 ・1839字 ・閱讀時間約 3 分鐘 ・SR值 598 ・九年級

  • 作者/鄭名揚|運動健腦黨

空氣手槍射擊是一種展現高度精準性與穩定性的運動項目。然而,在高度競爭的射擊比賽中,射擊表現不只取決於選手的技術,在關鍵時刻,選手的心理狀態更扮演決定勝負的關鍵。

奧林匹克運動會有 5 項手槍射擊項目,「10公尺空氣手槍」為其中一項。圖/Wikimedia Commons

越熟練,你的大腦越「游刃有餘」

對於大腦與運動表現的連結,有一個頗具說服力的假說稱為「心理動作效率假說 」(Psychomotor efficiency hypothesis)。

這個假說認為,當動作技巧越熟練的時候,負責此動作的特定腦區其活動會降低,因為此腦區的神經元以一種較和諧且有效益的方式運作,用較少的能量達到高水準的動作技巧。如此,其他的大腦資源可以轉向於更複雜的即時狀況處理,但不影響其動作品質。

大家可能會想腦波跟心理狀態有什麼關係呢?腦波可以反映出大腦活動到幾毫秒的精細程度,這樣的特性使腦波成為觀察運動表現前準備狀態的絕佳工具。

想找出大腦內的秘密?「腦波」成為許多科學家的重要研究工具。圖/Pixabay

簡單來說,腦波是一個生理指標,能反映大腦在處理特定訊息時的電化學反應。其收集的過程是經由黏貼在頭皮上的電極點記錄之後,經過精密的計算而呈現出來的。

不同的腦波頻率段其功能性意義不同,例如:大家常聽到的 alpha 波,可反應放鬆的心理狀態; Beta 波則反應警覺或特定的專注狀態。

做好準備動作後,觀察特定的腦波頻率

在腦波指標中,有一個非常特殊的指標,它可以反映感覺動作皮質區的活動。這個指標叫做感覺動作節率 (sensorimotor rhythm,以下簡稱 SMR )。

感覺動作區是其中一個重要區域,此區負責處理「動作」相關的大腦活動;不僅如此,感覺動作區也匯流動作相關處理的重要訊息。因此,感覺動作區對於研究運動選手在「動作準備期」的心理狀態是具有其特殊的角色。

SMR 為一個只限於感覺動作皮質區的腦波頻率,其頻率範圍為 12 至 15 赫茲。

2012年奧林匹克運動會的空氣手槍選手們。圖/Wikimedia Commons

過往的研究發現當 SMR 升高的時候,代表著此時感覺動作皮質區的活動是減低的,利用這樣的特殊關係,將 SMR 應用在觀察運動員動作準備期間的腦波不失為一個有趣的觀察點。

於是本團隊召募了 24 位高技能水準的空氣手槍選手,並在其射擊過程中記錄其 SMR 的活動。

實驗過程中,空氣手槍選手被指示進行如同比賽進行的 40 發射擊。在篩選完無效腦波後,我們將每位選手的射擊表現區分為最佳(最高分的十發)及最差(最低分的十發)的兩組,並比較其 SMR 活動在動作準備期間的差異。

吳佳穎是臺灣知名的空氣手槍國手,來自國立臺灣師範大學運動競技系。

破譯腦波的秘密,預測你的射擊表現!

研究結果發現,空氣手槍選手在最佳表現時,在動作準備期間的 SMR 活動顯著高於較差表現。

這樣的發現說明了在較佳運動表現的情況下,感覺動作皮質區的活動是處在節約能量但高效率的狀態。而較差表現之動作準備期間,反應的狀態則是處於受到若干外在干擾,以致於感覺動作區必須處理相關的干擾而提升其活動狀態。

這樣的發現也應證了先前對於心理動作效率假說的論點,也就是較好的動作表現是基於特定腦區處於一個較和諧且平穩的神經活動,如此特化的活動,促成一個比較高效率化的動作表現。

總而言之,運動員的心理狀態其變化是非常細微的。然而,透過觀察其動作準備期間的腦波變化,我們可以診斷這個動作準備的階段是否能促成之後較佳的運動表現。

資料來源

  • Cheng, M.Y., Wang, K.P., Hung, C.L., Tu, Y.L., Huang, C.J., Koester, D., Schack, T., & Hung, T. M.* (2017). Higher Power of Sensorimotor Rhythm Associated with Better Performance in Skilled Air-Pistol Shooters. Psychology of Sport and Exercise, 32, 47-52. http://dx.doi.org/10.1016/j.psychsport.2017.05.007

所有討論 1
活躍星系核_96
752 篇文章 ・ 106 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
人腦控制的挑戰
Y. M. Huang
・2013/08/02 ・1216字 ・閱讀時間約 2 分鐘 ・SR值 532 ・七年級

(取自Amazon.com,附上產品連結應該不是侵權吧)

近年來,隨著科技的進展,一些號稱腦波控制的產品陸續問世,但這些產品需要解決那些問題呢?上圖是一個實際的產品,但在網路上評價普通。下圖則是一個號稱用腦波控制貓耳朵來表達個人現狀的產品

首先,腦波記錄到的是在頭殼上的接受器所接收到的訊息,所以訊息其實是相當複雜的,也不太能區分究竟是哪個區域所傳遞出來的訊息。用功能性磁振造影儀可以定位出涉及特定活的腦區,但用腦波儀則較無法進行精確的定位,換言之沒有辦法透過腦波的來源來定義大腦所欲執行的功能。當然這個問題也不是不能解決的,因為可以用複雜的運算方式,長期追蹤紀錄進行某個特定活動時,諸多接受器接收到那些訊號,透過一些運作式,還是進行一些預測。

第二,因為我們處在外在環境複雜的世界,如果確保我們每次只做一件事情,這是相當困難的。即使快速的轉換注意力,可能也會對所記錄到的腦波造成影響,那運算式該怎麼去排除這樣的可能性呢?在實驗室中,我們當然可以降低外在刺激,但我們沒有辦法控制實驗參與者真的只想一件事情,所以實驗室內的結果,要類推到真實情境也會有一些挑戰。

再者,人在進行某個作業的時候,腦部活動一定是不變的嗎?很多研究發現人腦有快速的習慣化過程,也就是說同樣的刺激若短時間內重複出現,則對該刺激有反應的腦區,活化會快速的下降,但這個刺激還是同樣的被處理了。換言之,腦部的活動是會改變的,倘若如此,腦波儀器的運算式也要不停地去改變規則,否則就會做了錯誤的預測。

Wander等人在2013年研究一群有癲癇症的病人,他們都因為患有癲癇需要打開腦殼放置一些電極在腦中,這些電極能協助醫師判斷他們癲癇發作的區域。在這研究中,研究者也利用這個電極來記錄受測者學習一個電腦操作時的腦部活動變化,在行為層次,受測者最後的表現都比一開始來的好。此外,研究團隊也發現這些病人腦部活化的區域有明顯的變化,特別是前額葉、運動區、後頂葉在後期都比一開始有較低的活化。所以,運作式要如何客製化,如何根據每個人的學習曲線來改變,會是一個相當大的挑戰。當然,如果腦波變化只是要做簡單的判斷(例如判斷是或否之類的),那應該是沒有太大的問題。

Wander等人(2013)的研究因為可以實際紀錄腦內的變化,所以可以清楚看到大腦活化型態的改變。至於這樣的改變在一般利用腦殼上的接受器上是否可以看到,這無法不確定…… 但很有可能,未來我們的大腦都會被植入一個晶片,直接由內部控制。很多科幻電影,例如魔鬼終結者、駭客任務,不都是這樣演的嗎?我們或許離那一天不會太遠……

去看研究的原文 Distributed cortical adaptation during learning of a brain–computer interface task

去看主要研究者Jeremiah D. Wander的網頁,Wander教授主要研究的議題都是和腦部活動有關係的,特別是透過電腦介面互動產生的刺激,如何影響不同腦部區域的活動。

文章難易度
Y. M. Huang
95 篇文章 ・ 3 位粉絲
輔大心理系副教授,主要研究領域:探討情緒與認知之間的關係、老化對認知功能的影響、以及如何在生活中落實認知心理學的研究成果。 部落格網址:認知與情緒新聞網 (http://cogemonews.com)