0

0
0

文字

分享

0
0
0

孤獨的超級巨星

臺北天文館_96
・2011/05/27 ・1317字 ・閱讀時間約 2 分鐘 ・SR值 557 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

天文學家在鄰近星系中發現一顆異常明亮、但又非常孤獨的恆星,比我們太陽還亮300萬倍。在此之前所發現類似的超級巨星,大都是位在星團中,但這顆像明亮燈塔般的超級巨星卻是單星,這是這項發現最獨特之處。目前關於這顆星的起源不明,天文學家不清楚它究竟是單獨生成的,還是被星團踢出來的?不過無論是前述哪一個答案,都對現行的恆星形成理論是項挑戰。

北愛爾蘭阿麥天文台(Armagh Observatory)Joachim Bestenlehner、Jorick Vink等天文學家,利用位在智利的超大望遠鏡(Very Large Telescope,VLT)研究位在大麥哲倫星系(Large Magellanic Cloud,LMC)中的恆星VFTS 682。LMC是銀河系最大的衛星星系,位在南天,距離僅約16萬光年。藉由分析VLT上的FLAMES光譜儀所測得的星光,這些天文學家發現這顆恆星的質量高達太陽的150倍左右。像這樣的恆星卻是單獨存在而非位在任何星團中心區內,讓這些天文學家非常驚訝。

VFTS 682位在知名的LMC蜘蛛星雲(Tarantula Nebula)附近,最先是經由一個專門搜尋最明亮恆星的VFTS巡天計畫(VLT-FLAMES Tarantula Survey)發現。雖然是單星,不過它其實還是身處在一個恆星形成區內,而且是本星系群Local Group of galaxies)中最活躍的恆星形成區,周圍盡是大量氣體、灰塵與年輕恆星。

第一眼瞥見VFTS 682時,雖然會覺得它很熱、很年輕、很亮外,並不覺得它很突出。但經過VLT的仔細觀測後,Bestenlehner等人才發現這顆恆星所發出的能量絕大部分都在抵達地球之前,被沿途的塵埃雲氣給吸收或散射掉了。因此,如果將這些被吸收和散射的光也考慮進去的話,那麼這顆恆星的亮度比先前亮很多,足以名列最亮的恆星之一。

由於以紅光或紅外波段觀測,可以穿透塵埃的遮蔽,直接觀測到這顆恆星所發出的紅光和紅外光,但波長較短的藍光或綠光卻會被散射掉,因此這顆恆星看來偏紅,若少了塵埃的散射,那麼這顆恆星像獵戶座的參宿七一樣,呈現明亮的藍白色。除了非常明亮之外,VFTS 682也很熱,表面溫度高達攝氏50,000度,遠高於太陽的攝氏5,500度!由於它的質量實在是非常高,這種恆星的壽命必定不長,而且最終不僅會以超新星爆炸結束生命,甚至會變成更劇烈且持續長時間的伽瑪射線爆發(gamma-ray burst,GRB)這種宇宙中最亮的爆發型態。

研究成員們認為:看來在成員眾多的星團中形成最大和最亮的恆星相當容易,而雖然這些恆星不無單獨形成的可能,不過還是很難想像這麼亮這麼大的恆星會單獨形成。雖然VFTS 682現在看來是單星狀態,但其實距離成員眾多的RMC 136星團(簡稱為R 136)並不遠,如果VFTS 682的距離和R 136相同,則它距離R136星團中心僅約90光年而已。而R 136又以含有數顆類似VFTS 682這樣的超級巨星聞名於天文界,且VFTS 682的某些性質與R 136星團中心處最亮的超級巨星之一幾乎相同,因此這些天文學家懷疑VFTS 682會不會是在R 136星團中誕生,之後卻被拋出星團外?這類「落跑恆星」並不少見,但大都比VFTS 682小很多;所以如果VFTS 682真的也是「落跑恆星」,那麼質量這麼大的恆星究竟是如何從星團中因重力交互作用被拋出?這可是個很有趣的研究主題。

資料來源:http://www.eso.org/public/news/eso1117/, 2011.05.25, KLC  / 本文引用自臺北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

5
2

文字

分享

0
5
2
用黑白相機拍出色彩繽紛的宇宙
全國大學天文社聯盟
・2022/04/30 ・2550字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/邵思齊,現就讀臺大地質科學系,著迷於大自然的鬼斧神工。

現代的人們生活在充滿明亮人造光源的城鎮中,難以想像純粹的夜空是什麼樣子。對宇宙中天體的印象,多半來自各地天文台與太空望遠鏡所捕捉的絢麗星雲、星團、星系。但這些影像中的顏色是真實的嗎?如果我們能夠用肉眼看到這些天體,它們的顏色真能如影像中如此的五彩繽紛嗎?

色彩的起源:為什麼人眼能看到顏色?

電磁波跨越各種尺度的波段,有波長遠小於 1 奈米的伽瑪射線,也有波長數百公里長的無線電波。但人類眼睛中的的感光細胞僅能感測到波長介於 400-700 奈米之間的電磁波,也就是僅有這段電磁波能夠以紅到紫的色彩出現在人類的視野當中,所以我們對外界的認知就受限於這小一段稱為可見光(Visible Light)的視窗。人之所以能夠辨識不同的顏色,靠的是人眼中的視錐細胞。視錐細胞分成 S、M、L 三種,分別代表 short, medium, long,其感測到的不同波長的光,大致可對應到藍色、綠色、紅色。

S、M、L 三種視錐細胞可以感測不同的顏色,後來的相機設計也以此為基礎。圖/Wikipedia

肉眼可以,那相機呢?

在還沒有電子感光元件的時代,紀錄影像的方法是透過讓底片中的銀離子曝光、沖洗後,變成不透光的金屬銀(負片),但這樣只能呈現出黑白影像。於是,歷經長時間的研究與測試,有著三層感光層的彩色底片誕生了。它的原理是在不同感光層之間加上遮色片,讓三層感光片能夠分別接收到各自顏色的光線。最常使用的遮色片是藍、綠、紅三色。進入數位時代,電子感光元件同樣遇到了只有明暗黑白、無法分辨色彩的問題,但這次,因為感光元件無法透光,不能像底片一樣分層感光,工程師們只好另闢蹊徑。

於是專為相機感光元件量身打造的拜爾濾色鏡(Bayer Filter)誕生了,也就是由紅色、綠色、藍色三種方形濾光片相間排列成的馬賽克狀濾鏡,每一格只會讓一種顏色通過,如此一來,底下的感光元件就只會接收到一種顏色的光。接著,再把相鄰的像素數值相互內插計算,就可以得到一張彩色影像。由於人的視錐細胞對綠色特別敏感,因此拜爾濾色鏡的設計中,綠色濾光片的數量是其他顏色的兩倍。

這種讓各個像素接收不同顏色資訊的做法,雖然方便快速,卻需要好幾個像素才能還原一個區塊的顏色,因此會大幅降低影像解析度。這對寸解析度寸金的天文研究來說,非常划不來,畢竟我們既想得知每個像素接收到的原始顏色,又想獲得以像素為解析單位的最佳畫質,盡可能不要損失任何資訊。

藍綠紅相間的拜爾綠色鏡,廣泛用於日常使用的彩色感光元件,例如手機鏡頭、單眼相機等裝置。圖/Wikipedia

要怎麼讓每個像素都能獨立呈現接收到的光子,而且還能夠完整得到顏色的資訊呢?最好的方法就是在整塊感光元件前加上一塊單色的濾色鏡,然後輪流更換不同的濾色鏡,一次只記錄一種顏色的強度。然後,依照濾鏡的波段賦予影像顏色,進行疊合,得到一張還原真實顏色的照片。如此一來,我們就能用較長的拍攝時間,來換取最完整的資訊量。以天文研究來說,這種做法更加划算。

另外,由於視錐細胞並不是只對單一波長的光敏感,而是能夠接收波長範圍大約數百奈米寬的光,因此若是要還原真實顏色的影像,人們通常會使用寬頻濾鏡(Broadband filter),也就是波段跨足數百奈米的濾鏡進行拍攝。

美麗之外?濾鏡的科學妙用

雖然還原天體的真實顏色是個相當直覺的作法,但既然我們有能力分開不同的顏色,當然就有各式各樣的應用方法。當電子從高能階躍遷回到低能階,就會釋放能量,也就是放出固定波長的電磁波。若是受到激發的元素不同,電子躍遷時放出的電磁波波長也會隨之改變,呈現出不同顏色的光。

如果我們在拍攝時,可以只捕捉這些特定波長的光,那我們拍出的照片,就代表著該元素在宇宙中的分佈位置。對天文學家來說,這是相當重要的資訊。因此,我們也常使用所謂的窄頻濾鏡(Narrowband filter),只接收目標波段周圍數十甚至數個奈米寬的波長範圍。常見的窄頻濾鏡有氫(H)、氦(He)、氮(N)、氧(O)、硫(S)等等。

有時候,按照原本的顏色疊合一組元素影像並不是那麼妥當,例如 H-alpha(氫原子)和 N II(氮離子)這兩條譜線,同樣都是波長 600 多奈米的紅色光,但如果按照它們原本的波長,在合成影像時都用紅色表示,就很難分辨氫和氮的分布狀態。這時候,天文學家們會按照各個元素之間的相對波長來配製顏色。

以底下的氣泡星雲(Bubble Nebula, NGC7635)為例,波長比較長的 N II 會被調成紅色,相對短一點的 H-alpha 就會調成綠色,而原本是綠色的 O III 氧離子則會被調成藍色。如此一來,我們就可以相對輕鬆地在畫面中分辨各個元素出現的位置。缺點是,如果我們真的用肉眼觀測這些天體,看到的顏色就會跟圖中大不相同。

由哈伯太空望遠鏡拍攝的氣泡星雲,使用了三種波段的窄頻濾鏡。圖/NASA

當然,這種人工配製顏色的方法也可以用來呈現可見光以外的電磁波,例如紅外線、紫外線等。舉哈伯太空望遠鏡的代表作「創生之柱」為例,他們使用了兩個近紅外線波段,比較長波的 F160W 在 1400~1700nm,比較短的 F110W在900~1400nm,分別就被調成了黃色和藍色。星點發出的紅外光穿越了創生之柱的塵埃,與可見光疊合的影像比較,各有各的獨特之處。

三窄頻濾鏡疊合的可見光影像與兩近紅外線波段疊合的影像對比。圖/NASA

望遠鏡接收來自千萬光年外的天體光線,一顆一顆的光子累積成影像上的點點像素,經過科學家們的巧手,成為烙印在人們記憶中的壯麗影像。有些天體按照他們原始的顏色重組,讓我們有如身歷其境,親眼見證它們的存在;有些影像雖然經過調製,並非原汁原味,卻調和了肉眼所不能見的波段,讓我們得以一窺它們背後的故事。

全國大學天文社聯盟
7 篇文章 ・ 13 位粉絲

4

6
4

文字

分享

4
6
4
石蕊試紙的「石蕊」是什麼東西?為什麼碰到酸鹼會變色?
許阿鳥_96
・2022/03/25 ・2105字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

國中、國小自然課做實驗常用的石蕊試紙,大家應該都很熟悉,也知道石蕊試紙碰到酸性物質時會變成紅色,碰到鹼性物質時會變成藍色。不過,你知道石蕊試紙變色的原理是什麼嗎?

還記得實驗課常用的石蕊試紙嗎?圖/Wikipedia

「石蕊」是什麼?

編按:作者於 2022 年 3 月 27 日進行勘誤。

石蕊試紙當中會變色的原料,是由地衣提煉出來的。

地衣是真菌和藻類的共生體:真菌形成外殼,提供藻類保護;藻類行光合作用,提供真菌養分。雖然長得有點像苔蘚,不過它們並不是植物。由於地衣對空氣中的化學成分很敏感,常被當作空氣汙染的指標。除此之外,地衣的生命力強韌,它們通常都是一片荒蕪的環境中的先驅,在植物長出來之前,地衣就會先一步到達,把岩石分解成土壤,為之後的生態系打下基礎。在嚴寒的極地,地衣也是馴鹿等野生動物度冬重要的食物來源。

而其中,「石蕊」就是石蕊科(Cladoniaceae)、石蕊屬(Cladonia)的地衣。它們生長在中高海拔向陽的岩石上,屬於枝狀地衣,形狀就像一支支直立起來的粉綠色小喇叭。有些種類的石蕊邊上會長出鮮紅色的繁殖構造子囊果(ascocarp),就像戴著紅色帽子的英國士兵,因此又稱為「英國士兵地衣(British Soldier Lichen)」。雖然石蕊試紙是稱為石蕊試紙,但其實許多類群的地衣都可以作為石蕊試紙的原料,反倒是石蕊本人較不常被作為石蕊試紙使用。

石蕊。攝影/Cleyera Chou

延伸閱讀:十種常見的地衣

那麼,石蕊試紙變色的原理是什麼呢?要解答這個問題,我們必須先了解「顏色」和「酸鹼」的本質。

「顏色」是什麼?

為什麼我們看到紅色的東西,會覺得它是紅色;而看到藍色的東西,會覺得它是藍色呢?

這是因為,不同的物體會吸收、反射不同波長的光,當光照到物體上,沒有被吸收、而是被物體反射的光波,傳到我們的眼睛裡面,就會被大腦解讀為顏色。

例如,假如一個物體反射紅光,吸收其他波長的光,那個物體我們在白光下看起來就會是紅色的。另外,如果一個物體吸收所有光的波長,那個物體我們在白光下看起來就會是黑色的;反之,如果那個物體反射所有光的波長,那個物體我們在白光下看起來就會是白色的。

一張含有 時鐘 的圖片

自動產生的描述
光的吸收與反射圖解。繪圖/許阿鳥

那麼,為什麼不同物體會吸收、反射不同波長的光?這是因為它們的化學結構長得不一樣。換句話說,一個物體的化學結構若是改變了,吸收、反射的光波長也會跟著改變,外顯的顏色也就會變得不一樣了。

「酸鹼」是什麼?

知道了「顏色」本質上的差別是什麼,現在,我們要來談談什麼是「酸鹼」?溶液中,如果含有氫離子(H+),那這個溶液就會呈現酸性,溶液中的氫離子越多,pH 值就越小、越偏酸性;而溶液中如果含有氫氧根(OH),那個溶液就會呈現鹼性,氫氧根越多,pH值就越大、也就越偏鹼性。

回到石蕊試紙

現在回到石蕊試紙上面。石蕊中含有一種化學物質「 7-羥基吩噁嗪酮」(7-hydroxyphenoxazone,以下以 C12H7NO3 代稱。),是石蕊試紙變色的關鍵。C12H7NO3 是由三個環狀結構所組成的,帶有一個羥基(下圖中的HO-)。

7-羥基吩噁嗪酮的化學結構式。圖/Wikipedia

還記得前面說到的,酸性溶液含有氫離子,鹼性溶液含有氫氧根嗎?

當 C12H7NO3 碰到酸性溶液時,溶液中的氫離子會鍵結到環狀結構的氮(上圖中的 N)上面,造成結構改變;而當 C12H7NO3 碰到鹼性溶液時,羥基上的氫則會被溶液中的氫氧根(OH)搶走,造成結構改變。這兩種結構的改變如下圖所示。

正如前面所說的,不同結構的化學物質,會吸收、反射不同波長的光,因此看起來顏色就會不同。得到一個氫離子的 C12H7NO3,會反射紅光,吸收其他的光;失去一個氫離子的 C12H7NO3,則會反射藍光,吸收其他的光。

因此,石蕊試紙會變色的原因就是:酸鹼溶液會改變 C12H7NO3 的結構,當石蕊試紙中的 C12H7NO3 結構改變了,會吸收、反射的光波長也改變了,顏色也因此看起來不一樣了。

現在大家都了解石蕊試紙變色的原理了,下回使用石蕊試紙時,就知道它為什麼會變色囉!

參考資料

  1. Wikipedia. (2022). Litmus. Wikipedia.
  2. Yee, Thomas. (2018). Why do acids turn litmus paper red? Quora
  3. Warzecha, Klaus-Dieter. (2017). Can the colour change in litmus paper be explained by conjugated systems? Acid base.
所有討論 4

0

3
0

文字

分享

0
3
0
人造衛星的眼睛——恆星追蹤儀 aka 星象儀
黃 正中_96
・2021/08/17 ・2131字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

文/黃正中 研究員、丘政倫 博士|國家太空中心

幾千年來,航海者觀察著星星來確定他們在海上的位置,這種「看到而知之」的概念,也被運用在人造衛星的「恆星追蹤儀」上,用來確認所在位置與控制人造衛星的姿態,因此也被稱為「人造衛星的眼睛」。

福爾摩沙五號衛星的恆星追蹤儀。圖/太空中心

人造衛星的眼睛——恆星追蹤儀

恆星追蹤儀,又稱星象儀,是人造衛星的關鍵元件,工程師們利用恆星追蹤儀所記錄宇宙中的星光比對恆星(如下圖),參考地球自轉速率,以及人造衛星飛行的慣性,經過演算,可以判斷目前人造衛星飛行的位置和姿態。

恆星追蹤儀比對恆星軟體。圖/wikipedia

在宇宙中任何兩顆明亮的星星,星星之間的角度、間隔都是獨特的,沒有一對間隔完全相同的明亮的恆星。恆星追蹤儀使用分離角度來識別相機所指向的恆星,利用這些信息,人造衛星可以演算出在太空中的相對位置。

但是,約莫二十年前的發射的福衛一號,其實並沒有裝上恆星追蹤儀喔!這沒有眼睛的人造衛星到底是怎麼一回事呢?

沒有眼睛的福爾摩沙衛星一號

國家太空中心所研製的福爾摩沙衛星一號,在研發階段時,恆星追蹤儀尚未成為標準元件,而是使用慣性導航系統(inertial navigation systems, INS),慣性導航系統所選擇的引導星取決於地球自轉的時間和目標的位置,利用加速計和陀螺儀測量物體的加速度和角速度,估算連續運動物體位置、姿態和速度。慣性導航系統的優勢在於給定了初始條件後,不需要外部參考外部資訊 (例如恆星資料庫),就可確定當前位置、方向及速度,然而,隨著遙測衛星的照相的需求,對於地理位置判斷,姿態控制的精確度已經跟不上任務需求。

因此,後續發展的福爾摩沙二號衛星,便使用了「恆星追蹤儀」,以參考恆星資料庫與相對角度的方法,大幅提高了姿態控制的姿態控制精確度。當時的「恆星追蹤儀」是外購衛星元件,然而從福爾摩沙八號衛星開始,我國衛星採用自主研發成功的恆星追蹤儀,成為我國衛星姿態控制的標準配備。

恆星追蹤儀的結構

恆星追蹤儀是光學裝置,若使用光電池作為主要偵測器,準確度比較低;偵測器若使用照相機則靈敏度較高,可以獲得相對比較好的解析度;恆星追蹤儀主要的配置包括遮光罩、鏡頭、影像感測器(CCD 或 CMOS)、驅動控制器、處理器、軟體、電源供應以及介面。

恆星追蹤儀主要配置。圖/作者提供

目前天文學家已經精確測量了許多恆星位置,並記錄在恆星資料庫中,因此人造衛星可以用來比對恆星資料庫,經由偵測器獲取鏡頭視野中恆星分布的圖像,經由演算法可以測量人造衛星在參考座標中的所在位置,用以確定衛星飛行的方向或姿態。

恆星追蹤儀的發展

恆星追蹤儀經過廿年來的發展,市面上已經出現許多高靈敏度的恆星追蹤儀型號,具有過濾錯誤光源的功能,例如人造衛星表面反射的陽光或人造衛星推進器產生的廢氣羽流,以排除陽光反射或恆星追蹤儀窗口受到污染等干擾。除了各種誤差源,新型的恆星追蹤儀能修正包括球差、色差,以及低空間頻率、高空間頻率、時間等的各種誤差。

恆星追蹤儀的識別機制

一般恆星追蹤儀的識別算法,主要利用宇宙中共有約 57 個常用的明亮導航星星;但是,對於更複雜的任務,則需要更多數量的恆星數據庫以確定人造衛星的方向;通常高精度姿態需要數千顆恆星的目錄以確保全天各角落都有足夠星數落在視野內可供辨識,比對並過濾以去除有問題的光點,例如大尺度的星際變化,顏色指數不確定性,或在資料庫中的位置顯示不可靠的情況。這些類型的恆星目錄經演算法最佳化後,即儲存為衛星上的機載恆星資料庫。

恆星追蹤儀發展恆星識別算法,還要注意很多潛在的混淆源,例如行星,彗星,超新星等相鄰天體;除此之外,太空中鄰近的人造衛星,地球上大城市的燈源或光污染等光點,則需要擴散函數的雙峰特徵加以排除。

商用恆星追蹤儀

近年來商用恆星追蹤儀如雨後春筍,相繼出現在大型航太展;看到了立方衛星的商機,恆星追蹤儀也出現微小化,麻雀雖小卻五臟俱全,誤差精度已表現不俗,可以裝置在衛星上。

上圖是微小型恆星追蹤儀影用在立方衛星上(下圖)。圖/NASA

國家太空中心恆星追蹤儀研發

近幾年來國際上許多單位相繼投入恆星追蹤儀的研發,包括我國的國家太空中心將恆星追蹤儀列為前瞻關鍵研發項目,並已掌握跨領域整合之關鍵技術,取得不錯的研發成果,國產恆星追蹤儀將會應用在福爾摩沙八號衛星。

參考資料

  1. 國家太空中心網站 
  2. 恆星追蹤儀維基網站
  3. NASA 網站
黃 正中_96
8 篇文章 ・ 5 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...