Loading [MathJax]/extensions/tex2jax.js

2

7
9

文字

分享

2
7
9

磁力的時代即將來臨?磁電效應的物理、應用與未來

Castaly Fan (范欽淨)_96
・2023/09/25 ・3608字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

磁力的時代

著名理論物理學家加來道雄(Michio Kaku)曾在《2100 科技大未來》一書中提到:

不遠的未來將是「磁力的時代」。上世紀可以被視為「電力的時代」,從電子的發現以及量子力學的發展開始,人們意識到電子相當容易操縱,這也造就了收音機、電視、電腦、智慧型手機等各類電子產品的誕生。

日本 JR 磁浮 MLX01-2 實驗車,時速 581 公里破 2003 年金世紀界紀錄。 圖/wikimedia

但在不遠的將來,諸如「室溫超導體」的開發與普及很可能在硬體建設上帶來革命性的變化。超導體 (supercondunctor)意味著某些導體在極低溫(比如接近絕對零度,-273.15℃)下,電阻將消失,而沒有阻力也意味著沒有電力的損耗。傳統銅線中,電子的流動與管壁原子的摩擦力將造成能量的消耗;而超導銅線巧妙地規避了這個問題,因為在極低溫環境下,原子將凝滯不動,電子也就能相當「通暢」地行經管線,線路壽命和產電效率也就能大幅躍升。但要實現極低溫的環境並非易事,因而近年來科學家正在嘗試開發室溫環境下的超導體,這意味著超導線圈能在日常生活中普及。

且由於超導本身的抗磁性(diamagnetism),比磁浮列車更酷炫的「懸浮」類型交通工具將成為常態,且由於不再有電能、摩擦力的損耗,你可以想像未來一旦超導磁浮列車與軌道網絡成功開發,只要輕輕一推,便能將一輛列車從台北車站高效地駛向墾丁、甚至車程用不上一小時。

電生磁、磁生電?

學習過中學物理的都知道,電與磁之間的作用是密不可分的;目前為止,大部分電子產品也都與「電流磁效應」(即安培定律,Ampère’s law)或「電磁感應」(即法拉第電磁感應定律,Faraday’s law of electromagnetic induction)有著密切關聯。

-----廣告,請繼續往下閱讀-----

比如搭乘捷運或者公車時,「悠遊卡」內部的線圈就運用了電磁感應的原理,產生的電流將資訊傳輸至讀卡機;「電風扇」的馬達則透過電流磁效應將電力轉為磁力、再轉為機械能帶動扇葉;「麥克風」運用的則是透過聲波振動磁場、藉由電磁感應產生電流、再透過電流磁效應傳遞到揚聲器。由此可知,工業革命與量子力學的發展將我們帶到了「電力的時代」,而磁力似乎一直是電力的副產物。

常見的「悠遊卡」內部,同樣使用了電磁感應的原理。 圖/wikimedia

而電腦硬碟也是如此,磁碟由磁性材料組成,需要用到線圈產生磁場、改變磁性材料的磁場方向;而透過讀寫頭可以感測、改變磁性材料的磁極,從而達成資料的讀寫。和上一段例子稍微不一樣的點在於:硬碟、磁碟的原理和材料「本身的」磁性有關,而非純粹基於電與磁之間的作用。雖然硬碟透過磁場的改變而達到讀寫資料的目的,但這是相當耗能、耗時的;相比之下,電能對我們而言容易操控得多。如果我們能開發出一種僅僅用「電場」就能改變記憶本身的磁性,那麼,這將在資訊儲存的領域造成革命性的進展。這就進一步帶入這次的主題——「磁電效應」(magnetoelectric effect, ME)。

磁電效應的產生機制

不同於宏觀的電磁效應,「磁電效應」通常與物質本身的微觀結構有關。磁電效應的機制取決於晶體本身的對稱性 (symmetry),舉例來說,線性磁電效應的產生必須滿足時間反演對稱性 (time-reversal symmetry)被打破的條件。首先,時間反演對稱性聽起來有些奇妙,但它的概念相當直白:物體在順著時間流以及倒轉的畫面是相同且無法區辨的;數學上來說,代入 t → -t,如果得出的結果依然是一樣的就說明了系統是具有時間反演對稱性的。

電流的磁效應就是一個反例:設想一個電路迴圈,逆時針的電流產生出向上的磁場(右手定則)。現在讓我們「倒帶」這段影像:你會發現磁場先消失、電流再變成順時針環繞;然而,順時針的電流「理應」產生向下的磁場,但在倒帶的影像中並非如此——這便是時間反演對稱性的打破。

-----廣告,請繼續往下閱讀-----

凝態物理中最常見的例子之一就是鐵磁體 (ferromagnet):想像一塊純鐵,在施加磁場後,其內分子的磁矩方向會順著磁場方向排列一致,也就是被「磁化」;然而,如果將畫面倒轉,會發現磁矩方向回歸不規律、接著磁場消失,但在物理上,你無法透過「去磁化」而關閉磁場;反之,即使關閉了磁場、磁化也依舊不因此而消失。換言之,鐵磁體打破了時間反演對稱性。

而磁電效應的產生通常要求磁性同時打破時間反演對稱性與鏡像對稱性 (mirror symmetry),也就是在鏡中世界的物理必須符合邏輯。在某些情況下(比如螺旋擺線形的指向),磁性會打破鏡像對稱性,造成了電極化(施加電場後,電介質內部的正負電荷會朝特定方向排列)。

這些看似尋常的對稱性往往是物理現象背後的推手,在數十年來場論的發展中,物理學家逐一發現:當我們從一些物理現象(比如電與磁)抽絲剝繭,會發現背後是繁複的數學方程式,而彼此之間蘊藏著不少「對稱性」聯繫著;從微觀以及數學的角度來說,正是因為某些對稱性的破缺,導致了一些物理現象的產生——磁電效應便是如此。

在統計力學與量子場論中,描述系統能量性質的哈密頓量(Hamiltonian)取決於格點(lattices),對於磁力而言,若我們改變了格點的形態,磁能也可能會降低,在這過程中,電極化便可能因此產生;而像這樣微觀層面上造成電與磁的「耦合」(coupling,通俗的說法就是交互作用),便是「磁電效應」的根源。

-----廣告,請繼續往下閱讀-----

因此,我們可以這樣概括:

磁電效應的產生肇始於微觀尺度下的對稱性破缺,因此,磁電效應並非無所不在,通常僅出現於擁有特定對稱性的晶體。

舉例而言,三氧化二鉻(Cr2O3)就是最早一批被證實有磁電效應存在的晶體。

單分子磁體 — — 量子產業的結合

在近年來的研究中,單分子磁體(single-molecule magents,SMM)的發現掀起了不少科學家競相研究。顧名思義,單分子磁體指的是帶有特定「磁性」的「分子」;更精確的說,是指擁有「超順磁性」(superparamagnetism)的分子結構,意味著在特定溫度下,一些具有磁性的顆粒將不易受外界磁場影響,以至於磁化性質近似於順磁體。當然,並不是所有分子化合物都可以作為單分子磁體,一般來說,它們通常都是含有「金屬」原子的「有機化合物」,例如最早被發現的 [Mn₁₂O₁₂(OAc)₁₆(H₂O)₄](簡稱Mn₁₂)。

由於單分子磁體扮演著類似於「奈米磁鐵」的角色,微小且具有磁性的特質,使它們可以被應用於磁鐵儲存體元件、或者量子位元 (qubits) ——相信不少人對於近年來相當熱門的「量子電腦」並不陌生,而作為這種電腦運算的基礎,單分子磁體本身的自旋性質以及磁存儲優勢,很可能改善現有的記憶容量,從而成為量子位元的候選者。

-----廣告,請繼續往下閱讀-----
加來道雄討論量子電腦。

那麼,單分子磁體和磁電效應搭得上關聯嗎?筆者在 2023 年曾參與一項由美國洛斯阿拉莫斯國家實驗室 (Los Alamos National Laboratory)資助的研究計畫,其中便包含了對於單分子磁體「磁電效應」的研究,研究指出某些單分子磁體(比如 [Fe₃O(O₂CPh)₆(py)₃]ClO₄.py,簡稱 Fe₃ 聚合物)在特定溫度條件下可以產生磁電效應,我們可以透過建造穿隧二極振蕩器(tunnel-diode oscillator,TDO)等方式來探測磁化率 (magnetic susceptibility),從而偵測磁電效應。值得注意的是,這項實驗也指出一項優勢:我們將能透過改變電場來實現磁電效應,而非像傳統硬碟技術那樣透過磁場改變電場特性。

磁電效應的未來與展望

磁電效應在近年來逐漸掀起學術界的研究熱潮,同時也陸續獲得業界的矚目。其中一個最有可能實現的願景,便是磁存儲技術的改善,因為我們將不用藉由磁碟上面的磁性材料與磁場來控制資料的存儲與讀寫;相比之下,電場比磁場容易操控些,磁電效應提供了一個新方案,只需透過一些特殊磁性物質(比如具有特定對稱性的晶體)、便能藉由電場改變晶體特性(諸如磁矩等等)。而對於晶體的候選者,單分子磁體具有相當的潛力,因為這類型的晶體很有可能延伸到量子位元的建構,從而在記憶存儲與量子電腦的同步開發下,帶動未來量子產業的發展。

21 世紀,更多前沿的技術不斷開展,無論是室溫超導等凝態物理的研究、或者是磁電效應與量子產業的結合,都向人們宣示著磁力時代的來臨。

  • 加來道雄(2019)。2100 科技大未來:從現在到 2100 年,科技將如何改變我們的生活。時報出版
  • M. Lewkowitz, J. Adams, N. S. Sullivan, Ping Wang, M. Shatruk, V. Zapf, and Ali Sirusi Arvij. (2023). Direct observation of electric field-induced magnetism in a molecular magnet. DOI: 10.1038/s41598–023–29840–1
  • G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli. Single-Molecule Magnets. (2000). DOI: https://doi.org/10.1557/mrs2000.226
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
改變世界的通訊革命:電話發明家亞歷山大.貝爾(Alexander Bell)
數感實驗室_96
・2024/05/28 ・582字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

你多久沒有用手機打電話了呢?現代人大多將手機當作上網的工具,每天接到最多的電話應該也是快遞、推銷跟詐騙吧。但其實以前電話可以說是最重要的溝通方式。畢竟比起電報只能傳遞幾個字,能一口氣說出想傳遞的內容,不是方便許多了嗎?

 這樣在通訊史上扮演著舉足輕重的角色,他的發明改變了人們的生活方式,也開啟了全新的溝通時代。今天我們就來介紹,讓大家能說話的那位關鍵科學家,亞歷山大.貝爾(Alexander Bell)。

貝爾不僅是一位發明家,他同時也是一位教育家,他擔任私人家教時曾教導過海倫凱勒。海倫凱勒與貝爾一生保持聯繫,她在回憶錄中寫道,貝爾全心投入於聾啞教育,做出了許多貢獻,卻從不以此自豪。

-----廣告,請繼續往下閱讀-----

亞歷山大.貝爾最了不起的地方是他既擁有卓越的科技發明能力,又持續關心著聾啞教育。也許正是因為他如此關心人,才能發現各種尚未被滿足的需求,從而成為他發明的靈感來源。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

4
2

文字

分享

0
4
2
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。