0

0
0

文字

分享

0
0
0

高空的擾動影響全球氣候?

李柏昱
・2013/02/04 ・1335字 ・閱讀時間約 2 分鐘 ・SR值 550 ・八年級

這張示意圖顯示平流層中的極地渦旋能直接影響海洋中的洋流系統,導致全球溫鹽環流的變化。(圖片來源:Thomas Reichler, University of Utah)

位於數十公里高空中的1道氣流,竟然能對大海中的洋流產生影響,引發寒冬,甚至與全球氣候的變化有關?

美國猶他大學氣象學家湯瑪斯‧雷克勒(Thomas Reichler)的研究發現,位於平流層,離地面24公里~50公里高空的極地渦漩(polar vortex)的強弱,會影響北大西洋的溫鹽環流,對於歐洲與北美洲的天氣有巨大影響。

科學家藉由過去30年的氣候觀測資料,並利用超級電腦模擬4000年的大氣模型,發現極地渦漩與洋流之間的相關性:當平流層出現平流層急劇增溫效應(sudden stratospheric warming, SSW),平流層大氣溫度上升,此時極地渦漩強度減弱,甚至由原本自西向東吹送,反轉為自東向西;北大西洋中溫鹽環流的下沉速度往往隨之改變,以10年左右的周期影響全球氣候。

大洋中的輸送帶

溫鹽環流( thermohaline circulation )是因為海水溫度、鹽度分布不均,造成密度不同所引起的環流,對於調節全球氣候扮演十分重要的角色,北半球中高緯度因為溫鹽環流而擁有較為溫暖的氣候。

溫鹽環流源頭來自北大西洋格陵蘭南部海域表面的海水,因為溫度較低、密度較大而下沉至深海。由於整個下沉的機制對於海面附近的氣溫相當敏感,當海面附近的氣溫出現波動,例如變得更溫暖或是更寒冷的時候,會導致海水下沉的延遲或者提前。

來自高空的擾動影響全球氣候?

當平流層急劇增溫效應出現時,平流層中的極地渦漩會減弱甚至反轉。極地渦漩能將北冰洋中的酷寒高壓鎖在北極,它的強弱會影響北半球中高緯度冬天的氣溫與氣壓變化,控制著海水下沉區域海面氣溫的高低,進而影響整個北大西洋的洋流與全球的天氣。

科學家的超級電腦模擬結果顯示,極地渦旋、大氣壓力的震盪與北大西洋洋流呈現約十年的周期性變化。在1990年代,極地渦旋都十分強勁,而2000年代中,一系列的平流層急劇增溫效應導致極地渦漩減弱。

美國研究組織「氣候中心」(Climate Central)的安德魯‧傅利曼表示,當平流層急劇增溫效應出現時,北半球中高緯度的地區就要當心了:接下來數周內溫度將會驟降,暴風雪即將來襲。2013年1月6日美國上空便出現了平流層急劇增溫效應,14日~16日,美國、歐洲各地便開始降下暴雪,甚至重創英國經濟。

之前,很少人料想得到平流層高空中的氣流竟然會對大海中的洋流造成影響,這提醒我們地球各個系統之間的互動十分複雜,還有許多未明瞭的機制,有待我們的研究與發現。

(本文由國科會補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿) 

責任編輯:鄭國威(元智大學資訊社會所) 

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:

文章難易度
李柏昱
81 篇文章 ・ 1 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

2
0

文字

分享

0
2
0
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1039 篇文章 ・ 1364 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
0

文字

分享

1
1
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

所有討論 1
PanSci_96
1039 篇文章 ・ 1364 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

38
1

文字

分享

1
38
1
回到 AlphaGo 打敗棋王的那一天,看 AI 如何顛覆世界——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/30 ・4915字 ・閱讀時間約 10 分鐘

谷歌收購深度心智(DeepMind)幾週後,深度心智創辦人德米斯.哈薩比斯(Demis Hassabis)與其他幾位深度心智研究人員搭機來到北加州,與他們母公司的領袖舉行會議,並向他們展示深度學習如何破解「打磚塊」。

幕後推手——德米斯.哈薩比斯

會議結束後,哈薩比斯和谷歌創辦人賽吉.布林(Sergey Brin)聊了起來。他們聊著聊著發現有一共同的興趣:圍棋。布林表示當初他和賴利.佩吉(Larry Page)建立谷歌時,他沉迷在圍棋中,害得佩吉擔心他們根本無法成立公司。

哈薩比斯表示,如果他和他的團隊想要的話,他們能夠建造一套系統來打敗世界冠軍。「我覺得這是不可能的。」布林說道。就在這一刻,哈薩比斯下定決心要做到。

深度心智創辦人、英國人工智慧研究者——德米斯.哈薩比斯(Demis Hassabis)。圖/維基百科

「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)將哈薩比斯比作羅伯.奧本海默(Robert Oppenheimer),二戰期間做出第一顆原子彈的曼哈頓計畫主持人。奧本海默是世界級的物理學家:他懂得眼前重大任務的科學原理,不過他更深諳激勵之道,他結合手下不斷擴大的科學家,將他們的力量合而為一,並且接納他們的弱點,一起為計畫目標努力。

他知道如何感動男人(以及女人,包括辛頓的堂姊瓊安.辛頓),辛頓在哈薩比斯身上看到同樣的特質。「他主持 AlphaGo 就像奧本海默主持曼哈頓計畫,如果是別人來主持,他們可能就不會這麼快成功。」辛頓說。

揭開比賽序幕

深度心智的研究員們在 2014 年中曾發表一篇關於他們初期研究的論文,之後他們的研究規模大為擴大,並在第二年擊敗歐洲圍棋冠軍樊麾。此一結果震驚了全球圍棋界與人工智慧研究圈,但是 AlphaGo 對戰李世乭所造成的聲勢更是轟動。

IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。

圍棋在中、日、韓具民族性,AlphaGo 與李世乭的對弈備受矚目。圖/維基百科

在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。

第二天下午,在展開第一局對戰的兩小時前,他與幾名記者共進午餐,他拿著一份《韓國先驅報》(Korea Herald),這是用桃色紙張印刷的韓國英文日報。他和李世乭的照片都出現在報紙的頭版上半部。他沒有想到竟會受到如此重視。

「我知道會受到關注,」這位像孩子般矮小,39 歲但已禿頂的英國人說道,「但是沒有想到會這麼多。」不過,在吃著餃子、韓式泡菜的午餐時,哈薩比斯表示他對這場棋賽「審慎樂觀」。他解釋,那些名嘴並不知道 AlphaGo 在十月的棋賽後仍在繼續苦練棋藝。

他和他的團隊初始是將三千萬步棋路輸入深度神經網路來教導機器學習圍棋,自此之後,AlphaGo 就開始不斷與自己對弈,並且記錄哪些棋路是成功的,哪些又是失敗的——其運作與實驗室用來破解雅達利老遊戲的系統類似。自擊敗樊麾以來這幾個月,AlphaGo 已和自己對弈了數百萬局;AlphaGo 持續自學圍棋,學習速度之快遠超過所有人類。

在四季飯店頂樓的賽前餐敘,谷歌董事長艾力克.施密特(Eric Schmidt)坐在哈薩比斯的對面,以他一貫冷峻的態度闡述深度學習的優點。一度有人稱他為工程師,他糾正他們,「我不是工程師,」他說道,「我是電腦科學家。」

艾力克.施密特(Eric Schmidt)2001~2011 年間在 Google 擔任 CEO。圖/維基百科

他回憶他在 1970 年代研讀電腦科學時,人工智慧看來前景一片大好,但是隨著 1980 年代過去,進入 1990 年代,這樣的美景從未實現。如今,終於實現了。「這一科技,」他說道,「力量強大,引人入勝。」他表示,人工智慧不只是辨識照片的戲法,同時也代表谷歌 750 億美元的網際網路事業與其他無數的產業,包括保健產業。

機器與人類高手對決

在第一局,哈薩比斯是在私人觀賞室與走廊另一頭的 AlphaGo 控制室之間來回兩頭跑。控制室滿是個人電腦、筆記型電腦與平面顯示幕,這些設備全都與遠在太平洋彼端的谷歌數據中心內部數百台電腦相連。一支谷歌團隊在比賽前一週就已架設一條專屬的超高速光纖電纜直達控制室,以確保網際網路暢通無阻。

不過結果卻顯示控制室根本不需要進行多少操控:幾過多月的訓練之後,AlphaGo 已能完全獨力作業,不需要人為的幫助。同時,就算哈薩比斯與團隊想幫忙,也無用武之地。他們沒有一人的圍棋棋力達到大師級的水準,他們只能觀看棋局。

「我無法形容有多緊張,」深度心智研究員說道,「我們不知道該聽誰的。一邊是評論員的看法,你同時也看到 AlphaGo 的評估。所有的評論員都有不同的意見。」

在第一天的棋賽,深度心智團隊與谷歌的重要人物都親眼目睹 AlphaGo 獲勝。

賽後記者會上,李世乭面對來自東、西方數百名記者與攝影師表示他感到震驚。這位 33 歲的棋士透過口譯員說道:「我沒想到 AlphaGo 下棋竟能夠如此完美。」經過逾四小時的對弈,AlphaGo 證明自己的棋力可與全球最厲害的高手匹敵,李世乭表示他被 AlphaGo 殺了個措手不及,他在第二局會改變策略。

左為代替 AlphaGo 移動棋子的深度心智台灣研究員黃士傑,右則為李世乭。圖/YouTube

神來一筆的第三十七手

第二局對弈進行一小時後,李世乭起身離開賽場,走到露台抽菸。坐在李世乭對面,代替 AlphaGo 移動棋子的是來自台灣的深度心智研究員黃士傑,他將一枚黑子落在棋盤右邊一大塊空地上單獨一枚白子的側邊下方,這是該局的第三十七手。

在角落的評論室內,西方唯一的圍棋最高段九段棋手邁克.雷蒙(Michael Redmond)忍不住多看了一眼確認,然後他告訴在線上觀看棋賽的兩百多萬英語觀眾:「我真的不知道這是高招還是爛招。」他的共同評論員克里斯.戈拉克(Chris Garlock)則表示:「我認為下錯了。」他是一本網路圍棋雜誌的資深編輯,同時也是美國圍棋協會的副會長。

李世乭在幾分鐘後返回座椅,然後又緊盯著棋盤幾分鐘。他總共花了 15 分鐘才做出回應,在棋局的第一階段他有兩小時的時間,而這一手占用了他不少時間——而且此後他再也沒有找回節奏。在經過逾四小時的對弈後,他投子認輸,他連輸兩局了。

第三十七手也讓樊麾大感詫異,他在幾個月前遭到 AlphaGo 徹底擊敗,自此之後他就加入深度心智,在 AlphaGo 與李世乭對弈前擔任它的陪訓員。他從來沒有擊敗過這部人工智慧機器,但是他與 AlphaGo 的對弈也讓他對棋路的變化大開眼界。事實上,他在遭 AlphaGo 擊敗後的幾週內,與(人類)高手對弈連贏六場,他的世界排名也升至新高。

現在,他站在四季飯店七樓的評論室外面,在第三十七手落子幾分鐘後,他看出了此一怪招的威力。「這不是人類會下的棋路,我從來沒有看過有人這麼下,」他說道,「太美了。」他不斷地重複說道,太美了、太美了、太美了。

第二天上午,深度心智的研究員大衛.席瓦爾溜進控制室,他想知道 AlphaGo 如何做出第三十七手的選擇。AlphaGo 在每一局對弈中都會根據它所受過數千萬種人類落子變化的訓練,來計算人類做出此一選擇的機率,而在第三十七手,它算出的機率是萬分之一。

AlphaGo 在對弈中會根據千萬種落子變化,計算出人類下此一步棋的機率。圖/YouTube

AlphaGo 知道這不是專業棋手會選擇的路數,然而它根據與自己對弈的數百萬次經驗——沒有人類參與的棋局——它仍是這麼做了;它已了解儘管人類不會選擇這一步,這一步棋仍是正確的選擇。「這是它自己發現的,」席瓦爾說道,「透過它的內省。」

這是一個既甜美又苦澀的時刻,儘管樊麾大讚此一步棋是神來之筆,但是一股鬱悶之情席捲四季飯店,甚至整個韓國。一位中國記者表示,儘管他為 AlphaGo 贏得第一局感到高興,可是現在他深感沮喪。

第二天,一位在首爾彼端經營一家新創企業育成中心的韓國人權五亨表示他也感到悲傷,這並非因為李世乭是一位韓國人,而是因為他是人類,「這是全人類的轉捩點,」權五亨說道,他的幾位同事點頭表示同意,「它讓我們了解人工智慧真的已在我們眼前——也讓我們了解到其中的危險。」

在那個週末,此一鬱悶的情緒只增不減。李世乭第三局也輸了,等於輸掉整個棋賽。坐在賽後記者會的桌子後面,李世乭懺悔之情溢於言表。「我不知道今天要說什麼,但是我首先要表達我的歉意,」他說道,「我應該拿出更好的成績,更好的結局,更好的比賽。」但是坐在李世乭身邊的哈薩比斯卻發現,自己衷心期盼這位韓國棋手在接下來的兩局中至少能贏一局。

AlphaGo 認輸的那一局

在第四局的七十七手,李世乭再度陷入長考,就和第二局的情況一樣,但是這一回他考慮的時間更久。棋盤中間有一堆棋子,黑白相間,他有近二十分鐘只是緊盯著這些棋子,抓著後頸前後擺動。最後,他將他的白子落在棋盤中央的兩枚黑子之間,將棋勢一分為二,AlphaGo 方寸大亂。

在每一場對弈中,AlphaGo 都會不斷重新計算勝率,並且顯示在控制室的一台平面顯示幕上。

在李世乭落子後——第七十八手——這部機器的反擊很差,在顯示幕上的勝率立刻大降。「AlphaGo 累積到那一步之前的所有戰略都算是報銷了,」哈薩比斯說道,「它必須重新再來。」就在此刻,李世乭抬頭看著對面的黃士傑,彷彿他擊敗的是這人,不是機器。自此之後,AlphaGo 的勝率一路下跌,在近五個小時後,它投子認輸。

DeepMind 製作的 AlphaGo 與李世乭對弈紀綠片。/YouTube

兩天後,哈薩比斯穿過四季飯店的大廳,解釋 AlphaGo 為什麼會輸。AlphaGo 當時是假設沒有人類會這樣下第七十八手,它計算出來的機率是萬分之一——這是一個它熟悉的數字。

就像 AlphaGo 一樣,李世乭的棋力也達到一個新境界,他在棋賽最後一天的私人聚會場合中這樣告訴哈薩比斯。他說與機器對弈不僅讓他重燃對圍棋的熱情,同時也讓他茅塞頓開,使他有了新想法。「我已經進步了。」他告訴哈薩比斯,一如幾天前的樊麾,李世乭之後與人類高手對弈,連贏九場。

AlphaGo 與李世乭的對弈,使得人工智慧在世人眼前大爆發,它不僅是屬於人工智慧領域與科技公司,同時也是屬於市井小民的里程碑。在美國如此,在韓國與中國更是如此,因為這些國家視圍棋為人類智慧結晶的巔峰。這場棋賽彰顯出科技的力量與其終將超越人類的恐懼,同時也帶來樂觀的前景,此一科技往往會以出人意表的方式推動人類更上層樓。儘管馬斯克等人警告其中的危險性,但是這段時期人工智慧的前景一片光明。

裘蒂.英賽恩(Jordi Ensign)是佛羅里達州一位四十五歲的程式設計師,她在讀完棋賽報導後出去在身上紋了兩幅刺青,她在右臂內側紋了 AlphaGo 的第三十七手——左臂紋了李世乭的第七十八手。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載

所有討論 1
時報出版_96
156 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。