0

3
0

文字

分享

0
3
0

場域限制造成的「殘響」──音樂關鍵字|EP1:尋聲

音樂關鍵字Unlocking Music_96
・2022/06/24 ・534字 ・閱讀時間約 1 分鐘

我們日常中無處不在的音樂,除了療癒身心,更可以透過聲音的特性,找出藏在背後的科學小知識!
由客家電視製作的《音樂關鍵字》系列動畫因此誕生,是臺灣首部原創音樂科普動畫劇集。以校園生活為背景,透過生動幽默、溫馨感人的故事劇情,運用 3D 動畫串起聲音與音樂的物理學、心理學、生理學,並量身訂做原創客語歌曲。
讓音樂成為你生活中,最浪漫的科學!

關鍵字:殘響、回音、反射音

喜歡捕捉聲音的阿辰,存錢買了一套錄音設備錄製動物的聲音,卻遇到了苦惱不已的大難題——他必須在不能去專業錄音室的前提下,用自己簡單的錄音設備錄製出音樂,阿辰應該怎麼辦呢?

阿辰注意到的,就是「場域」的限制。

空間如果不夠封閉,便會錄製到外界的雜音。如果是封閉方正、沒有吸音物品的室內空間,便會造成「殘響」。由於聲波在遇到障礙物時會反射,當聲波在封閉且無吸音物品的空間裡,便會快速地從四面八方反彈,當反射的時間間隔少於0.1秒,我們所聽到的混合餘音就是殘響。

如何排除殘響,以簡單的錄音設備錄製音樂呢?阿辰找到了好方法。

-----廣告,請繼續往下閱讀-----
文章難易度
音樂關鍵字Unlocking Music_96
8 篇文章 ・ 5 位粉絲
生活裡無處不在的聲音,其實是最浪漫的科學—換個方式「尞/聊」音樂。 提到音樂,多數人總以為那是右腦的事,是抽象的知覺、感性的領悟,但其實音樂也有它很左腦、很理性、很科學的一面,生活裡無處不在的聲音,其實是最浪漫的科學。 https://www.instagram.com/unlockingmusic2022/ https://hakkatvmar100.wixsite.com/unlockingmusic

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
鯨魚為什麼歌唱?它們的歌聲可以用來探測海底地形?——《五感之外的世界》
臉譜出版_96
・2023/09/20 ・2132字 ・閱讀時間約 4 分鐘

一九九○年代,冷戰終於結束,蘇維埃政府在海中布下的潛水艇威脅也隨之消散,於是海軍提供克拉克與其他專家機會,讓他們透過 SOSUS 的水下麥克風觀測、記錄大海裡的各種聲音。透過聲音頻譜——也就是 SOSUS 系統將接收到的聲音轉換為視覺圖像——克拉克無庸置疑地看到了藍鯨正在歌唱的跡象。

光是第一天克拉克就發現,單一個 SOSUS 感測器所記錄下的藍鯨叫聲比過去所有科學文獻所記載的加起來還要多。大海中充斥著鯨魚的歌聲,而這些聲音則來自無比遙遠的彼方。克拉克估算,記錄下他聽見的那股歌聲的感測器,距離聲音的主人有兩千四百公里之遠。藉由位於百慕達的水下麥克風,他竟能夠聽見遠在愛爾蘭的鯨魚歌聲。

鯨魚的歌聲可以傳得很遠,整個大海中都充斥著鯨魚的歌聲。圖/Giphy

於是他說:「當時我心想:『羅傑的想法沒錯。』我們實際上真的可以探測到橫跨整個海洋盆地的鯨魚歌聲。」對於海軍的分析專家來說,這些聲音就是他們每天工作都會遇到的正常現象,而這些聲音與工作內容無關,所以根本不會被標記在聲音頻譜上,也因此就被忽略了。然而對克拉克來說,這卻是令他茅塞頓開的驚人發現。

穩定規律的「歌聲」其實是一種探測手段?

雖然藍鯨與長須鯨的歌聲能夠跨洋越海,卻沒人知道鯨魚是否真的會在如此遙遠的距離下互相溝通;畢竟牠們很有可能只是在用極大的音量對附近的同類示意,只是音波剛好傳到了很遠的地方去而已。不過克拉克又指出,鯨魚會一次又一次地不斷重複同樣的音頻,甚至也會精準維持音與音之間的間隔長度。鯨魚會在浮出水面呼吸時停止歌唱,回到水中繼續歌唱卻也會落在剛剛好的拍子上。他說:「所以牠們唱歌並不是隨興而至的舉動。」這種現象令他想起了火星探測車為了傳送資料回地球所發出的那種重複的連續訊號。假如人類想設計出能夠跨越海洋進行溝通的訊號,大概也會想出類似藍鯨歌聲的形式吧。

鯨魚歌聲或許也有其他用途。牠們發出的每個音都能持續好幾秒,而其波長更是好比足球場的寬度。克拉克曾問過他在海軍的朋友,假如他有發出這種聲音的能力,可以拿來幹嘛?

「那我就能摸透整個海洋。」他的朋友如此回答道。這話的意思是,他能夠藉此刻畫出深海的地景,透過傳至遠方的次音波回音,他就能辨識出海底山稜與海床的位置。地球物理學家也肯定能運用長須鯨的歌聲來了解各處的地殼密度。那麼,鯨魚到底用這種聲音來做什麼呢?

鯨魚似乎可以透過歌聲的回音辨識出海底山稜與海床的位置。圖/pixabay

克拉克從鯨魚的動作中看出了答案;透過 SOSUS,他發現藍鯨出現在冰島與格陵蘭之間的極地水域中,一路蜂擁直奔——還是該說是鯨擁?——熱帶地區的百慕達,旅途中一路歌唱。他也看過鯨魚在深海的群山間左彎右拐,在幾百英里間的深海地景之中蜿蜒前進。「看到這些動物的移動方式,就會感覺牠們大腦裡似乎有著以音波構成的海洋地圖。」他如此說道。

他也猜測,鯨魚在長長的一輩子裡,會不斷累積大腦中的聲音記憶,隨之擴增儲存在大腦裡的海洋地圖。克拉克也還記得,曾有位資深海軍聲納專家告訴他,大海裡每個地方都有它專屬的聲音。克拉克告訴我:「他們說:『讓我戴上耳機,我不用看就能直接告訴你現在位於拉布拉多還是比斯開灣的海域。』而我就想,假如人類累積了三十年的經驗就能做到這個地步,何況是演化了一千萬年的動物呢?」

漫長的迴響~不同時間尺度下的認知

不過關於鯨魚聽力的尺度,還是有令人費解之處。鯨魚的叫聲確實可以傳遞到很遠的地方,但卻也很花時間;在海裡,音波一分鐘只能傳五十英里(約八十公里)遠,因此假設一隻鯨魚聽見另一隻鯨魚在一千五百英里(約二四一四公里)之外發出的叫聲,這隻鯨魚得在半小時以後才能聽見對方的歌聲,就像天文學家觀測到的星光其實是恆星在很久很久以前散發出的光芒一樣。假如某隻鯨魚想探測五百英里(約八百零四公里)之外那座山的位置,牠得等上十分鐘才能接收到自己叫聲的回音,這感覺起來似乎有點荒謬。

然而各位想想,藍鯨在水面上的心跳一分鐘約為三十下,潛入水下後卻會下降至一分鐘只跳三次。這麼一想,鯨魚生命中的時間尺度想來一定與人類相當不同吧。倘若斑胸草雀能夠在單一個音裡就聽見以毫秒為單位的美麗音頻,也許藍鯨分辨同樣潛藏在聲音中的祕密訊號的時間尺度則是分或秒。若要想像鯨魚的生活樣貌,「你得發揮想像力,以完全不同的次元思考。」克拉克對我說道。

他認為這兩種體驗的差異應該就像先用玩具望遠鏡注視夜空,再改用美國太空總署架設在太空的哈伯太空望遠鏡一覽星羅棋布的壯麗星辰。一想到鯨魚,他的世界彷彿就變大了,不管是空間還是時間的尺度,都更加遼闊。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。