0

6
1

文字

分享

0
6
1

《沙丘》的沙子是流體還是固體?——「顆粒體」的運動原理

研之有物│中央研究院_96
・2022/06/18 ・6628字 ・閱讀時間約 13 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/黃品維、簡克志
  • 美術設計/蔡宛潔

顆粒體如何流動?

流沙、土石流、穀倉的米……這些顆粒體,究竟是如何流動的?過去,科學界對於「顆粒流」的研究起步非常晚,也一直缺乏統整型的理論。中央研究院「研之有物」專訪院內物理研究所蔡日強副研究員,他長年研究顆粒體的運動行為,實驗室透過自創的顆粒軟球實驗,試圖找到全新的方法來描述顆粒流,並為固體與流體兩個歷史悠久的學術領域,搭建出一個溝通的橋梁!

從流沙到洗米:隨處可見的「顆粒體」

「顆粒體的流動」(Granular flows)聽起來或許有點生硬,但它其實是我們生活中常見的現象,像是在廚房裡洗米、攪拌咖啡豆、或是在工地攪動砂石,都是顆粒流的一種。而如果以人類文明的發展來說,從古時候建造金字塔、到現在火星探測器的著陸,也都有顆粒流的現象參與其中。

然而,即使顆粒流與我們息息相關,科學家對它的了解卻少之有少。究竟,顆粒體是怎麼流動的?有沒有一個方程式,可以描述顆粒流的行為?中研院物理所的蔡日強副研究員,長年進行顆粒體相關研究,這一次,他希望透過全新的實驗,解開顆粒體的流動之謎!

-----廣告,請繼續往下閱讀-----
要如何描述顆粒體的流動呢?是固體?還是流體?圖/iStock

萌芽階段的顆粒流研究

不管是固態力學或是流體力學領域,都是「百年老店」,已經累積了上百年的歷史。相較之下,顆粒流的研究非常年輕,僅僅是最近幾十年的事情而已。造成這樣的原因,除了顆粒流本身的複雜性之外,也是因為它的定位,一直處於「三不管地帶」。

顆粒流很特別,它像固體一樣,能夠堆疊、擠壓,可是又會有流動的行為,若只用固體或流體的角度切入,都很難完整描述這樣的現象。然而在學術圈,固體和流體兩大流派,經過上百年的發展,都有各自根深柢固的作法、解讀現象的方式,彼此之間存在著很大的鴻溝。

「在學術界,Solid(固體)的人講 Solid 的語言,Fluid(流體)的人講 Fluid 的語言,兩邊的溝通其實非常少!」蔡日強笑著說「我以前參加過一個應用力學大會,大會裡的會議名稱,直接分成兩種開頭,一種是 S、另一種是 F,擺明了他們討論事情的角度,不是固體就是流體。」

對顆粒流來說,這樣的二分法顯得非常尷尬。蔡日強認為,如果可以從固體與流體領域,各自吸取一些精髓,或許能夠連接兩個學派,用不一樣的角度研究顆粒流!

-----廣告,請繼續往下閱讀-----

如何研究「顆粒體的流動」?

為了瞭解顆粒體如何流動,蔡日強設計了一套獨特的實驗方法,可以分為「顆粒體」與「容器」兩個部分。

在「顆粒體」方面,蔡日強採用醫用材料(PDMS),製作出許多顆粒軟球,硬度接近橡皮擦、大小約一公分。為什麼會採用「軟」球來代表顆粒體呢?

過去,在物理學家的理論中,常常會把顆粒體視為「剛體」。然而,剛體的假設在理論上不僅無法呈現顆粒體被壓縮的情況;而且實驗上,也很容易遇到麻煩!

如果採用剛硬的顆粒體做實驗,在緊密排列時,很容易「卡死」,不只完全動不了,也很可能讓珍貴儀器損壞。為了讓顆粒體可以緊密排列,又不會完全卡死讓儀器動不了,可以擠壓、變形的顆粒軟球,就成為了最好的實驗材質。

-----廣告,請繼續往下閱讀-----
影片為實驗室展示用,實際操作時液體會淹沒顆粒軟球,保持液體折射率和軟球一致,以便用光學攝影機記錄內部軟球的運動情況[註1]
資料來源/研之有物
上圖為蔡日強展示顆粒軟球與填充液體折射率一致的情況。圖/研之有物

至於在「容器」方面,蔡日強在裡面設計了齒輪狀的錐形圓盤:上方的錐形圓盤連接馬達,可以不斷旋轉;齒輪狀可以咬住顆粒軟球,帶動容器內的顆粒軟球一起轉動。

設計成錐形的用意,則是可以讓容器內的顆粒體,不論在什麼位置,切變率(shear rate)都可以維持一致。簡單來說,錐形圓盤試圖讓讓整體流動盡可能「均勻」,讓相鄰顆粒之間的速度不至於落差太大[註2]

齒輪狀的錐形圓盤,為了讓軟球盡量保持一致的切變率。圖/研之有物

每一次的實驗,錐形圓盤都會進行定速轉動(固定角速度,Ω),施以所有顆粒軟球固定的切變率。同時,研究團隊也會記錄,在馬達固定轉速時,系統需要多大的轉矩來對抗馬達。但初步實驗即出現了非常匪夷所思的現象!

匪夷所思的實驗結果

顆粒軟球實驗的示意圖與記錄,不同顏色的曲線記錄了顆粒軟球在不同轉速下的轉矩變化。圖/研之有物(資料來源|蔡日強)

從上圖的實驗數據顯示,在低轉速時(Ω = 0.0001 rps),系統產生的轉矩最高;在高轉速時(Ω = 0.05 rps),產生的轉矩反而偏低。

-----廣告,請繼續往下閱讀-----

這是什麼意思呢?你可以想像你在攪拌一碗綠豆,當你攪得越慢,遇到的抵抗卻越大;攪得越快,遇到的抵抗反而越小,聽起來是不是有點不合常理?

更奇怪的是,在兩種轉速之間,也就是中等轉速(Ω = 0.005 rps)的時候,轉矩出現了不規則劇烈起伏。從圖中的藍線可以看到,轉矩一次又一次的爬升、跌落、再爬升、再跌落,就像小型地震一樣,出現了大規模的「集體崩落」!

從鏡頭中看崩落現象

團隊在實驗時同步攝影,儀器每轉一定的角度(比如:每萬分之一圈),就將顆粒流的剖面擷取成影像。

實驗時容器內部剖面的圓球運動情況,顆粒軟球有加螢光染料顯影。資料來源/蔡日強

接著,將相片中每一格像素轉為對應數值,分別與上一時刻的照片相減,來得出顆粒體與上一時刻間的「差分影像」。

-----廣告,請繼續往下閱讀-----
差分影像(State α):高轉速,承受轉矩小。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強
差分影像(State T):中轉速,轉矩劇烈起伏,有集體崩落現象。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強
差分影像(State β):低轉速,承受轉矩大。其中:紅色表示顆粒由此側離開,藍色表示顆粒向此側接近。資料來源/蔡日強

藉由這些時變圖,我們得以更明確地判讀顆粒體的運動方式,了解顆粒軟球位移的方向、快慢、範圍。從影像中可以看到,相較於高轉速與低轉速,在中等轉速時,確實出現了大規模顆粒球同時位移的現象,綜合以上的實驗數據和影像,團隊總結了幾個問題:

  1. 一般而言,流體在速度越快的時候,阻力會越大。然而在這次的實驗中,轉速越快、轉矩反而變小,跟過往認知不一樣。
  2. 中等轉速時,為何會出現集體崩落的現象?
  3. 有沒有什麼指標,可以預判集體崩落的出現?

這些問題,讓團隊當時感到十分頭痛,蔡日強回憶「剛開始我也覺得怪怪的,不過我們常說,如果你發現一件比較奇怪的事情,那只有兩種可能:一種是你弄錯了,另一種是真的有個新發現了!」

摩擦係數不是常數?

那麼,在顆粒流切變率加快的同時,究竟有什麼物理性質跟著改變了?

為了解決這些疑惑,團隊進行了許多獨立實驗。其中一個關鍵的實驗,就是量測顆粒軟球材質的「摩擦力」。他們採用同樣是 PDMS 材質的半圓柱棒,兩兩接觸並以不同切面速度(U)拖行,觀察過程中摩擦力的變化。

-----廣告,請繼續往下閱讀-----
橫軸是拖行速度,縱軸是磨擦係數(摩擦力/正向力)。圖/研之有物(資料來源|蔡日強)

結果發現,當拖行速度較慢的時候,摩擦係數大約保持在定值,基本上就跟大家過往的認知一樣。但有趣的是,當速度超過一個臨界速度(VC)之後,摩擦係數卻像是坐溜滑梯一樣開始下降,換言之,顆粒軟球的表面突然「變滑了」。

從這個實驗可以確定,摩擦係數並非定值,而是會隨著速度增加而改變的數值。其實,「摩擦係數不是常數」的概念,並非什麼驚天動地的新發現,但過去許多顆粒流的研究,卻忽略了這個基本現象,只把摩擦力當成一般常數看待。

「摩擦係數不是常數」並非新觀念,但大家似乎都忘記這件事了。

而當我們把這個概念,重新應用在顆粒流實驗時,那些匪夷所思的現象,突然都有了合理的解釋!根據團隊的推測,當錐形圓盤轉速加快,快到一定程度的時候,有些顆粒軟球之間的速度,可能已經超過了 VC,導致顆粒軟球摩擦係數下降,才會讓量到的轉矩降低。而「集體崩落」的發生也可能是如此。

崩落現象的風向球:「slipperiness」

有沒有可能推估,顆粒流系統在受力之後,到底會偏向固體?流體?或是發生崩落現象呢?

-----廣告,請繼續往下閱讀-----

為此,團隊創造了一個無因次量(不帶物理單位的參數),姑且稱為「slipperiness」,希望可以做為顆粒流行為的「預測指標」。

S 代表 slipperiness,定義為顆粒直徑(d)乘上切變率,再除以臨界速度(VC)。圖/研之有物

slipperiness 可以大略解讀成系統「平均而言有多滑」,代表了顆粒之間相對速度與臨界速度 VC 的大小關係,以及摩擦係數減損的程度。

換言之,如果 slipperiness 遠大於 1 ,代表大部分顆粒體之間的速度大於 VC,摩擦係數近乎消失,難以構成橫向的受力,呈現幾乎「自由」的滑動,在這種情況下,顆粒體之間的液體成為阻力的主角,顆粒體的行為會比較偏向「流體」。

反之,如果 slipperiness 遠小於 1,顆粒體之間相對滑動即使有,速度也都不高,這種情況下摩擦係數接近定值,顆粒體之間可以很容易「消化」所有方向的力,扮演好整個系統承力的主角,顆粒體的行為會比較偏向「固體」。

然而,如果 slipperiness 剛好「不大不小」,代表這兩種極端情形有可能混搭,以局部或整體的方式交錯產生。最戲劇化的事件就會是前述的「集體崩落」,更正式的名稱可叫做「間歇流」。這危險區間的確切範圍,則有待更多細節來決定。

但有了 slipperiness ,蔡日強團隊至少搭出了第一座「橋梁」,連結過去難以相容的兩種觀點來看待顆粒流:一端是摩擦力完全沒打折,可視為「固體」(solid);另外一端,則是顆粒間摩擦力喪失殆盡,已經「完全液化」,可視為「流體」(fluid)。

然而,顆粒流的兩個極端之間其實有相當的過渡地帶,並不在原來習以為常的學術傳統裡。

雖然已發表的實驗還是非常簡化的版本,但蔡日強表示希望能透過論文提醒大家「摩擦力會改變」這件事,也希望拋磚引玉,「讓固體跟流體兩個學術社群,能夠有更多的對話」。

研究的下一步

現階段,團隊正著手改良實驗儀器並設計更多延伸實驗。舉例來說,如果顆粒軟球不一樣大,會發生什麼事?如果顆粒軟球不是圓球,行為會如何改變?如果軟球之間開始壓得不夠緊密的時候,「間歇流」的現象是否消失?這些問題,都是研究團隊接下來想了解的。

藥丸形狀的顆粒也許是團隊下一階段的研究對象之一。圖/研之有物

團隊也正積極透過電腦模擬,研究顆粒體在「無重力、無液體,僅考慮接觸力」的理想環境下,會有什麼樣的流動行為。

蔡日強說道「在實體實驗中,我們只有六個感測器可以推算顆粒流系統的受力反應,但在電腦模擬實驗中,等於有上千個感測器可以蒐集數據,真的是太棒了!」每一顆小球的受力、接觸、旋轉、位移等,在模擬中都看得一清二楚,讓團隊有機會作進一步的推論。

此為電腦模擬在中等轉速下的顆粒流變化。顆粒球之間的彈性能以顏色長棒標示,愈偏紅色那端、彈性能愈大、球和球之間愈緊;愈偏藍色那端、彈性能愈小、球和球之間愈鬆,顏色間的能量級距高達 10 的數次方 。影片中可以看到顆粒球發生集體崩落現象的「瞬間」,原本有很多紅橘色長棒,崩落之後幾乎都變成藍或綠,但長棒的數量只有些微增加,顯示彈性能隨著崩落事件大量釋放。資料來源/蔡日強

下圖是團隊正在統整的「三態圖」,顆粒流有三大區塊,分別是「固態」、「液態」,以及下方的「氣態(懸浮態)」。在緊壓(高密度、高壓力)的狀況下,固態和液態兩極端之間呈現一條「危險走廊」,可看到此案例在 slipperiness 介於 0.001 到 1 之間,發生集體崩落的現象。

「顆粒體三態」的示意圖,縱軸為每顆球「接觸多少鄰居」的平均值,橫軸為 slipperiness。接觸鄰居愈多,表示顆粒之間愈密合。反之,若接觸鄰居低於 2,就很難維持力學結構了。介於固態(紅)和液態(綠)兩個極端之間的過渡帶(橘),正是前述「集體崩落」現象發生的地方,也就是「間歇流」!圖/研之有物(資料來源/蔡日強)

不久之前,蔡日強也開始翻閱地震相關的書籍,想要了解顆粒流「集體崩落」的現象,與真正的地震和土石流,是否有可以互相參照的可能性?蔡日強的期待是讓「顆粒流研究」成為物理學家走入現實世界領域的另一個起點。

「我們離真正的戰場還很遠」,蔡日強笑著說:「但這一切,才正要開始!」

蔡日強(左1)與研究團隊嘗試用新的方式描述顆粒流行為,並為固體與流體兩個歷史悠久的學術領域,搭建出溝通的橋樑。圖/研之有物

註解

  1. 液體折射率和軟球一致是為了讓光線走直線,而不被球的表面偏折。這些膠球還會加上螢光染料,以便在光學攝影機下觀察。
  2. 切變率:在此指的是顆粒水平速度隨高度的變化率,更廣泛的定義參見延伸閱讀〈流沙、地震、土石,與沙漏裡的物理:「動靜之間」〉。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
4

文字

分享

0
7
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。