Loading [MathJax]/extensions/tex2jax.js

1

3
3

文字

分享

1
3
3

從色彩恆常性的兩個實驗,來理解人類怎麼看見色彩

鳥苷三磷酸 (PanSci Promo)_96
・2022/03/22 ・2871字 ・閱讀時間約 5 分鐘

  • 文/陳彥諺

大腦是很有趣的東西,聰明的大腦,可以幫我們快速判斷、掌握當下狀況,有助於我們適應多變的環境。不過,有時候卻會聰明反被聰明誤——大腦判讀的顏色,和真實的顏色竟然不一樣!

前陣子引起網路上瘋狂討論的「藍黑還是白金洋裝」以及「灰綠還是粉白的鞋子」,就是兩個經典案例。

藍黑還是白金洋裝的案例中,同樣一張雙色相間的條紋洋裝圖,有人看到的是「藍黑條紋」,另一部分的人,看到的則是「白金條紋」。看到藍黑條紋的人,因為大腦主動幫你忽略了圖片右上角的光源,因此判斷出來的顏色,比較接近裙子的原始色像素。而看到白金條紋的人,大腦可能是太聰明了,主動幫你將圖片右上方的光源考量進去,根據過往的經驗,大腦認為,在金色背光光源的照射下,如果畫面中出現了偏藍的顏色,那麼這個部分的原始色應該是白色,因此,感謝聰明的大腦,你看到的是白金條紋洋裝。

灰綠還是粉白鞋子的案例,也是同樣道理。某些人的大腦,會自動將光源顏色的因素考量進去,快速提供根據過去經驗判斷後的結果,導致最終看到的是鞋帶、LOGO、鞋底處是綠色,鞋體是灰色的結果;另一些人,看到的則是鞋帶、LOGO、鞋底處是粉紅色,鞋體是白色。

這些案例背後的運作機制,其實可以理解為「大腦的自動白平衡功能」,也就是心理學家或神經生物學家所說的「色彩恆常性」。

發現色彩恆常性——蒙德里安色板實驗

為了理解「色彩恆常性」到底是怎麼發生的,科學家蘭德(Edwin H. Land)進一步做了著名的「蒙德里安色板實驗」。蒙德里安(Piet Cornelies Mondrian)是 1940 年代的荷蘭畫家,他為了達到藝術創作中的「純粹實在」,終身致力於進行色彩實驗。他的代表作有《構成第十號》與《百老匯爵士樂》,都以非常簡單的線條、極為單純的紅黃藍色塊,構成了畫面上的和諧平衡。而蘭德所做的色彩恆常性實驗中,刺激物的圖板與蒙德里安的畫作非常相像,因此就稱之為「蒙德里安色板實驗」。

蒙德里安色板實驗。圖/參考資料 4

1964 年,蘭德運用不同波長(即不同顏色。不同顏色的波長便不同。)的光源,照射在蒙德里安色板上,讓受試者在回答特定區域是什麼顏色的同時,一面用機器偵測反射光的波長。如圖所示。左邊三台裝置是 RGB 三原色的光源,用來控制光線的顏色,右方的黑色裝置,則用來偵測反射光的顏色。

蘭德透過這個實驗,發現人們即使在不同光線的照射下,仍然可以準確地回答該色塊的顏色,這說明了一件事——人類辨識物體顏色的方式,並不是單純靠著該物體的反射光來決定的,還會受到周圍物體反射光的影響。進一步來說,人類對於顏色的判斷,並不是絕對的,而是相對比較出來的。

如此一來,也就可以解釋另一個有趣的小實驗了。當灰色的小女孩圖片,加上了紅色的濾鏡,猛然一看,加上紅色濾鏡圖的那一側,小女孩眼珠的顏色似乎就變成了藍色。不過,再拉近仔細一看,其實小女孩眼珠的顏色並沒有改變,仍然是原先的灰色,只是由於色彩恆常性,當大腦偵測到畫面中的環境偏紅,便自動補色,補出了原先根本不存在的藍色。

啟動色彩恆常性——馬克西莫夫的鞋盒實驗

所以說,人體的色彩恆常性,在什麼時候會開啟呢?有趣的鞋盒實驗告訴我們答案。

科學家馬克西莫夫(Vadim Maximov),以一個鞋盒做成實驗裝置。他在鞋盒一側,開了一個小孔作為觀看孔,另一側內壁則有類似於榻榻米的色塊圖案。從正上方打入特定光源進入盒中後,要求受試者觀看刺激物,結果發現,兩張畫面結構相同,但色塊完全不同的原圖,在不同的特定光源照射下,受試者的色彩恆常性並沒有發揮作用,他們所看到的圖案顏色,是兩張一模一樣的圖。

馬克西莫夫的鞋盒實驗示意圖。圖/參考資料 4

接著,在圖案上加入一圈白色色塊後,再次請受試者觀看,受試者的色彩恆常性開始發揮作用,能分辨出圖案的原圖顏色了。實驗結果再次確認了,我們所認定的物體顏色其實是相對的,會隨著周遭顏色進行修正,而當白色有顏色變化的時候,特別能啟動我們的色彩恆常性機制。

加上白線後對顏色的影響。圖/參考資料 4

AERO 創作者筆電,幫助創作者看見最真實的色彩

大腦太聰明了,會根據狀況,自動幫我們把某些真實的部分,轉換成另一種樣子。只是,從古至今,作為創作者,最需要的就是傳達真實了。那麼,該怎麼辦呢?

不怕不怕,來到了 21 世紀,現代的方法要用現代方式解決。作為一個創作者,我們不能關閉自己腦中的自動白平衡,但我們有選擇最真實與最優質的可能!

AERO 創作者筆電,考量了創作者從「設計原稿」到「完成作品」的全方位需求。視覺設計師們心中的痛,就是當顏色稍有偏離,造成了整體作品的大走鐘,努力的心血就徹底埋沒。

為了讓創作者能有絕佳發揮,AERO 16 創作者筆電從前端到後端,通通都考量了。在前端設計上,搭載 4K AMOLED 的面板,支援 100% DCI-P3 色域,並在 16:10 黃金螢幕比例的呈現下,讓你所見即真實。而在設計稿完成後的印刷階段,則以 Pantone Validated/ X-Rite ® 技術 Factory Calibration 高敏度媒合印刷校色,讓創作者的設計與實體製作物完美接軌,實體不色偏。

更厲害的是,AERO 16 是目前業界唯一具有「X-Rite™ 工廠校色」 以及「Pantone® Validated」 雙重認證的創作者筆電!

舉凡平面設計師在排版設計上,更需要精準的媒合印刷的校色,設計產品(包含招牌、海報、傳單、標識…等等)都需要在顏色上有高敏銳度的對接,擁有 Pantone Validated/ X-Rite ® 技術 Factory Calibration 並以 16:10 螢幕,接近黃金比例的設計更貼近創作工作者的需求。你也是追求完美、追求真實的創作者嗎?AERO 創作者筆電系列,協助你的創作,有最美、最真實的呈現。

提供參考:第 12 代 Intel® Core™ 處理器機種類型參考:

AERO 創作者筆電具有 4K AMOLED 或 miniLED,支援 100% DCI-P3 色域,給你最全面的色彩饗宴。

  1. 實驗檢測色彩恆常性理論之正確性
  2. The Retinex Theory of Color Vision
  3. Physiological explanation of Land’s Retinex Theory
  4. Retinex at 50: color theory and spatial algorithms, a review
文章難易度
所有討論 1

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
輕薄柔軟的觸控螢幕
PanSci_96
・2014/08/30 ・1299字 ・閱讀時間約 2 分鐘 ・SR值 524 ・七年級

圖片來源:display central
圖片來源:display central

採訪/L編

十幾年前,行動電話要輕巧方便好攜帶;而這個年頭,人們為追求大螢幕的視覺效果,反而接受逼近平板大小的手機。雖然在大螢幕手機上玩遊戲、看影片比較舒服,閱讀文章能防老花,又可以顯得臉小,卻有個麻煩的缺點:實在太大了。若想將大螢幕配件放入口袋說走就走,有什麼好方法嗎?

不如就把螢幕折一半帶著走吧!有別於常見的玻璃螢幕,工研院利用「多用途軟性電子基板技術」(FlexUP),做出紙張般的觸控式螢幕,不僅可以彎曲,也能摺疊,彎曲的特性讓螢幕可以安裝在任意曲面,配備在腕戴式互動裝置,能做成更大螢幕、貼合身體的智慧型手錶,或是裝在衣服上做成天線寶寶裝;摺疊的特性賦予螢幕收納功能,例如以軟性螢幕取代投影機和布幕,或是更棒的:放在行動裝置上,讓平板、手機合而為一。

工研院研發FlexUP技術時,雖然要創造突破性的產品,但也不能太天馬行空,要讓業者的設備勝任新技術,因此工研院以現有的面板生產技術加以開發,在一般製作面板的玻璃載板黏上塑膠基板,讓廠商只需做些微的調整,就能在既有生產線製造軟性面板。製作完成後,再進行塑膠基板切割,從玻璃取下軟性面板。為了讓成品輕鬆與玻璃載板分離,工研院在玻璃跟塑膠基板之間加入「離型層」,讓塑膠基板在加工時維持牢固,完工後又能輕易拆卸。

Anqbrr
Tri-Fold AMOLED可以兩方向摺疊

軟性觸控式螢幕將顛覆使用者習慣

現在智慧型手錶等腕戴式互動裝置的設計,皆因硬式螢幕有所限制,為配合手部曲線,只能做小巧的螢幕,且較不舒適。工研院發表了利用軟性觸控螢幕的腕戴式互動裝置,圓弧的線條可以包覆手臂,做大面積的螢幕,讓腕戴式裝備有更多元的應用。捨去玻璃的FlexUP螢幕厚度只有100微米,如此輕薄的螢幕也讓穿戴式裝置更加舒適。

pad_5099885_GIFSoup.com
可摺疊的觸控螢幕,可以同時擁有手機和平板的功能。

智慧型手機、平板電腦各有其不可取代性,卻又有許多重疊的功能;滑臉書、上PTT、用Line聊天、看影片、聽音樂、查資料等等,在行動裝置上皆大同小異,差別只在螢幕尺寸造成的使用限制,若能將兩機合體,將會方便許多。配上可摺疊主動有機發光二極體(AMOLED)的可摺疊觸控螢幕,可望讓智慧型手機及平板電腦合而為一:摺疊手機好攜帶、攤開平板防老花。其實任天堂DS遊戲機就有摺疊收納螢幕的概念,但兩個螢幕之前還是有很大的斷層,可摺疊的軟性螢幕讓摺疊機構也是顯示器,形成流暢的大螢幕,不會有銜接的斷層。只有60微米厚的軟性螢幕以塑膠取代玻璃,不僅減輕重量、體積,也能避免玻璃因撞擊造成的碎裂。

電容式觸控面板的原理是感測手指觸摸螢幕時產生的電場,而觸控面板的準確度會被顯示器的電流干擾,當兩者越靠近,干擾會越大。FlexUP觸控板輕薄的優點這時卻成了缺點,FlexUP觸控面板比玻璃面板薄了幾倍,距離下方的顯示器較近,受到較多的干擾而降低觸控螢幕的感應。軟性觸控螢幕雖然很令人期待,但研究人員還在努力突破許多困難,讓技術和成果更加完美。