0

2
0

文字

分享

0
2
0

雞群之間,也存在社會階級制度?——《動物們的青春》

臉譜出版_96
・2021/07/17 ・4058字 ・閱讀時間約 8 分鐘
  • 作者 / 芭芭拉‧奈特森-赫洛維茲 (Barbara Natterson-Horowitz)、凱瑟琳.鮑爾斯 (Kathryn Bowers)
  • 譯者 / 嚴麗娟

當家作主

時值一九○一年,在挪威的奧斯陸,一名六歲的男孩在農舍後院玩耍,他將和父母在這棟租來的房子裡度過夏天。那房子裡有一群雞,而小男孩很聰明、被保護得好好的,擁有很強的直覺,他每天都在觀察這些雞。他幫每隻雞都取了名字,也記住每隻雞的怪癖和關係。然而,夏天結束了。必須離開這些雞讓心緒敏感的男孩感到很難過,他整個冬天都在思念牠們。

隔年春天,他央求母親讓他養一窩自己的雞。他母親或許是出於疼愛自己的獨生子,或者只是希望在挪威漫長的夏日裡能讓孩子有事情做,又或者她想把握機會,激發孩子對科學的興趣,抑或是培養他的責任感。不論如何,她答應了。男孩的夏天又有一群雞陪伴。

男孩央求母親讓他養一窩自己的雞。圖/Pexels

隔年,男孩養了更多雞,就這樣維持幾年後,他已經花了數百個小時觀察這些雞。心思早熟的他十分注意細節,記下雞隻所吃的食物、食量,以及牠們下的蛋。他也記錄每天的天氣,試著釐清天氣對母雞的影響。但他最有興趣、最喜愛的則是描繪雞隻之間的關係。他畫出一頁又一頁複雜的三角形和示意圖,記錄雞隻在階級制度中的輪替方式。日復一日,他能注意到雞有沒有生病,以及生病與否對群體的穩定性及爭鬥有什麼意義。

這名男孩在十歲時注意到的事情就是「啄序」(pecking order)。多年後,到了一九二二年,二十八歲的索列夫.雪爾德拉普-艾貝(orleif Schjelderup-Ebbe)正式發表他的研究結果,他的文章被刊登在德國的《心理學期刊》(Zeitschrift für Psychologie)上。即使到了今日,「索列夫對雞隻社會及個體心理學的貢獻」仍然替我們在了解生物階級和地位這個古老而有力的結構時,奠定了基礎。十歲男孩在雞群中觀察到的階級排列本能,在自然界的其他物種中也可以找到,例如大象、浣熊、魚類和爬蟲類,當然還有鳥類。此外,人類也會有階級排列的現象——而且在 wildwood 時最為強烈。

基本上,個體未來的地位在野莽期時就已經定型。年輕動物在青少年時期的順位和排序會決定牠們在族群中的定位,以及未來一生的歸屬感。有些動物無法決定自己會被評判到何種地位:因為生來便是如此;有些動物可以學習或建立地位,而只有極少數的個體能夠改變它。

所有的動物,包括青少年在內,都會打量彼此的體型、力氣和魅力。牠們會評估對方的年齡、健康狀況及生殖潛力,並用游泳、飛行及打鬥等身體能力互相比賽、炫耀。在成年之前,動物們也會精明地評估家人、朋友和敵人的能力。社會團體的接納或拒絕都會影響到牠們未來的機會。動物在這個生命階段承受著極大的壓力,牠們要好好表現自己。理由非常充分:因為賭注很高。

不論什麼物種,步入成年都意味著動物要接受評鑑。

不論什麼物種,步入成年都意味著動物要接受評鑑。圖/Pexels

地位的強烈引力

既然有地位、階級、定位、位置、等級、序位、聲望這麼多種說法,那就直接統稱人氣吧,或者用現在學生直率的語言——「實用度」也不失精確。不論用什麼詞語來形容,社會階級——即個體在群體裡的位置——是塑造個人認同的強力因素。

對人類以外的動物來說,社會階級的重點或許不在身分認同,但其對個體的生存方式仍有深遠的影響。社會階級決定動物能吃飽還是會餓死、有後代還是無法生育、會受到保護還是會被推到狼群面前。因此,動物寧可選擇忍受折磨、丟下食物、放棄交配及背叛其他同伴,確保自己不會被群體冷落或驅逐。對社會性動物來說,階級地位或許就像重力,看不見卻又影響甚鉅,無法逃避。階級地位的影響力無所不在,不僅決定動物一輩子的生活方式,也決定動物會如何對待其他動物。

自然界中,動物在群體中的地位愈低,活得就愈悲慘。階級較高的動物能獲得較多食物、領域及其他資源。而不懂得運用策略徵召同伙和避敵、不把注意力放在同儕身上,或忽略旁觀者,都可能會讓動物失去原本可能屬於自己的資源、活動範圍和伴侶。舉例來說,欄舍裡階級最高的公雞享有宣布黎明到來的特權—牠第一個啼叫,在牠報曉前,想與牠競爭的下位者都必須克制啼叫的衝動。占有優勢地位的雌倉鼠不讓下位者的胚胎著床。高階的螯蝦占走溫度恰好是攝氏二十四度的地點,把下位者趕到水溫較高或較低的地方。階級最高的信鴿占領最高的棲木。階級最高的魚能游在魚群的最前面,那裡水中的氧含量最高,魚糞最少。地位低的魚兒則在魚群的最後面。

階級最高的魚能游在魚群的最前面,那裡水中的氧含量最高,魚糞最少。圖/Pexels

這還不只是舒適度的問題。被分配到底層就像對動物判下無期徒刑,有時候甚至是死刑。階級高的動物享有群體中最幸運、最安全的位置,所以牠們不太可能被掠食者攻擊、抓走和吃掉。階級較高的烏魚占有魚群內部的位置,遠離會被掠食者攻擊的危險外圈;階級低的魚則常被推往「危險區域」,但不一定是最外圍。階級較低的動物通常會保持較高的警覺性,查看有沒有掠食者,因此牠們睡得比較少,即使能睡,也睡得不安穩。階級高的動物比較有安全保障,階級低的動物則比較容易碰到危險。

動物能從群體生活中獲得一些益處。在多雙眼睛的共同監視下,群聚比落單安全,個體不用怕被掠食者攻擊。分享資源和資訊能提升效率,餵飽大家的肚子。年輕的成員也可以在群體中先學習成長,再負起責任。然而,當個體聚集在一起時,明確的社會結構和規則可以減少衝突,階級制度也可以維護動物群體的秩序,提高生產力。

階級地位較高的成員能優先享有食物、領域、伴侶和避風港,牠們也會極力防衛自己的位置和特權。為了保命,動物必須認清自己在群體中的位置,大腦系統會隨時警示牠們社會地位的升降變化。神經化學訊息會刺激動物調整行為,回應周圍的混亂不安。就我們所知,當非人類的動物感受到這些神經化學「地位訊號」時,能產生討厭或愉悅,或介於兩者之間的感受。但當人類接收到相同的神經化學地位訊號時,則會出現情緒。事實上,我們的情感生活來自覺察自身地位的生理本能,而這源於我們的動物祖先。動物能意識到自己的地位,而社會地位的變化或許會替牠們帶來機會,也可能造成死亡。

動物若不能深入了解整個社會階級制度有多麼複雜,或許會錯過提升地位的機會,但若搞不清楚自己的位置,引來的卻可能是攻擊,或讓自己被殺或被驅出團體。社會性動物會觀察、評估日常社會生活中所有微小的細節,除了找尋提升地位的機會,也要留意和避免災難性的事故發生:地位滑落。

為了生存,動物必須迅速察覺自身地位的下滑。

動物若不能深入了解整個社會階級制度有多麼複雜,或許會錯過提升地位的機會,甚至讓自己遭受攻擊。圖/Pexels

天使的啄序

年幼的索列夫注意到他養的雞有啄序,而在很多個世紀前,神學家也為天堂裡的天使安排了階級。他們草擬出複雜的階級制度(hierarchy,字面意思即為hieros=神聖的,arkhia=統治),從頂層嚴厲的熾天使和智天使,往下到最底層性情溫和的大天使和一般天使。熾天使有一項特權,就是能坐在最靠近天神的寶座上。另一方面,低階的天使必須花時間照管人類比較沒那麼重要的事務。定義明確的階級制度是有組織的系統,個體在其中的地位有上下之分。

雪爾德拉普-艾貝注意到,啄序的形成非常迅速。當雞隻加入團體,不可見的新秩序便慢慢開展,隨後,每一隻母雞就都知道自己的地位在哪裡。

當階級制度面臨變動時,會先中斷幾秒,接著雞群回復(看似)平和且運作順暢的團體。從字面上來看,「啄序」指的是雞隻用嘴喙維持的階級制度。最高層的雞可以隨意啄雞群裡的其他母雞。而比牠低一級的雞,除了最高層這隻,也可以亂啄其他母雞。排第三的雞除了前兩隻,其他的雞都可以啄……依此類推。

從母雞的「啄序」可以判斷母雞在群體中的地位。圖/Pexels

動物中有很多不同的階級類型。有的專制,有的結盟,有的呈三角關係,也有的穩定不變或者彈性多變。人類與許多物種的階級制度通常是線性的。人類天生擁有深植在內的能力,能明白自己的階級,以及知道自己適合扮演團體中的何種角色。麥克.貝克夫(Marc Beko-)是個動物行為學家,他說:「社會性動物,例如人類……天生就會替自己分配階級,有人在最上面,有人在最下面,群體其餘的成員則排在這兩點中間。」

在我們繼續探索地位如何影響動物的生活之前,要先了解「階級」(rank)和「地位」(status)這兩個詞雖然看似可以互換,且常被混用,社會科學家和動物行為學家卻會加以區分它們。階級是動物在團體中的絕對位置,會盡可能以最為客觀的方式計量。相反地,地位不是客觀的度量,而是對階級的「覺察」。地位高低取決於群體中其他成員的想法和決定。地位和階級可能一致,但也可能不同。以人類生活中的實例來看,就像大家都相信某個家庭有好幾百萬美元的財富,實際的身價卻沒有那麼高。他們的階級(有多少錢)低於他們的地位(公眾所察覺到的財務狀況)。群體裡的每一隻動物都有自己的階級和地位。這是畜群、鳥群和魚群中極為複雜的差異性,但外行人初看會覺得不明顯。

——本文摘自《動物們的青春》,2021 年 5 月,臉譜


數感宇宙探索課程,現正募資中!

文章難易度
臉譜出版_96
58 篇文章 ・ 241 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。


0

2
1

文字

分享

0
2
1

霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!

寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁


數感宇宙探索課程,現正募資中!

寒波_96
8 篇文章 ・ 15 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。