0

0
2

文字

分享

0
0
2

讓水生生物窒息的綠色殺手——優養化│科基百科

鳥苷三磷酸 (PanSci Promo)_96
・2021/03/17 ・1248字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 民視科學再發現 委託,泛科學企劃執行。

我家門前有小河~裡面綠綠的~哇!眼前這片厚實的綠,莫非代表著無限生機?

才不!以前課本都有學過,這樣的現象稱為「優養化」,主要是由於清潔劑、肥料或穢物等等,對植物來說超級營養的物質流入河川、溪流中,而這些營養物質通常包含等元素。

然而某些熱帶地區的氾濫平原,也可能會因為季節性的洪水氾濫,而將磷酸鹽類通通帶進水裡。

這些超爆營養的物質會使得水體中的「初級生產力」增加,讓藻類啊、浮游性植物啊像發了瘋似的快速生長。

-----廣告,請繼續往下閱讀-----

漸漸地,水體的顏色開始改變……紅色綠色黃色褐色,水裡頭總是有許多,許多顏色的彩虹燈!(大誤)

圖為一條發生優養化情形的中國河川。圖/wikimedia

優養化會讓水中的生物漸…漸…窒息……

植物一直長,那不就可以促進光合作用,生成好多好多的氧氣! \ 萬歲 /

修但幾勒!實際上的情況可以說是完全相反啊!如果優養化發生了,首當其衝的便是生物多樣性降低,整個生態系的物種結構、優勢物種全都跟著改變! 

在白天,因為植物數量大增,確實會讓水中的溶氧量增加;不過一旦到了晚上,這些藻類與依附在其中的微生物,會進行大量的呼吸作用,使得水裡的溶氧量急速下降

當溶氧量降到一定程度,水裡的魚、蝦與其他底棲類生物,便會因為缺氧而窒息死亡;如果情況越演越烈,整個水體變成「厭氧」環境的話,便會促進一些可能產生致命毒素的細菌生長,如肉毒桿菌。

-----廣告,請繼續往下閱讀-----
讓水體溶氧急劇下降甚至促成有毒細菌生長的優養化,可謂水生生態系殺手。圖/flickr.com

從源頭做好,才是解決優養化問題的關鍵

科學家神通廣大,應該可以挽救吧?!

優養化的發生過程其實頗為漫長,等我們意識到水變得混濁,顏色也不再自然的時候,通常已經回~不~去~了!QAQ

是的,沒錯!一旦我們讓水變得營養滿分,其實很難恢復成原樣。

所以說,從源頭開始做好污水處理、營養鹽消耗,減少含氮、磷等營養鹽在水體中的含量,真的非常重要啊!

錯誤用法:如同七彩霓虹燈的水最漂釀惹ヽ(✿゚▽゚)ノ
正確用法:水流管理做得好,優養化情況自然少

資料來源

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
全球與台灣面臨怎樣的水資源困境?有解方嗎?【2023 臺灣國際水論壇】
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・3777字 ・閱讀時間約 7 分鐘

本文由 經濟部水利署 委託,泛科學企劃執行。

人體有 70% 是水,而地球表面亦有 70% 被水覆蓋。「水」對人類來說,是賴以為生的必要資源,又因「水」相對容易取得,讓人們不易察覺水的珍貴。

在近年氣候變遷衝擊下,旱澇交替已成常態,經濟部水利署賴建信署長接受泛科學專訪時亦表示,依據聯合國政府間氣候變遷專門委員會(IPCC)第 6 次評估報告(AR6)分析,未來臺灣連續不降雨日數及最大暴雨強度將明顯增加,對於水資源及水環境帶來嚴峻挑戰。

具體來說,未來降雨將會更集中在特定時間與地點,在降雨地區造成更嚴重的洪災,讓非降雨地區的缺水情形更加嚴重。結果是降雨地區的水庫會不斷洩洪,無法有效收集雨水,而非降雨地區的水庫又會完全沒水。

-----廣告,請繼續往下閱讀-----

這情景也預示著我們平常容易取得的「水」,將轉變為更稀缺珍貴的資源;然而,水又是人生存所必須,若現在不採取行動,水資源終將成為人類生存的最大束縛。

為了讓企業、政府、學術單位能更重視未來所面臨的水資源問題,水利署於 10 月 23 日舉辦的「2023 臺灣國際水論壇」以「水未來」(Vision for Water)為主題,針對「水與企業永續」、「水與能源鏈結」、「水與自然解方」、「水與減碳科技」,希望形成創新的漣漪,向外擴散,激盪出國內外產、官、學界合作契機。

由於氣候變遷,看似唾手可得的乾淨用水,已逐漸成為稀缺資源。圖/Pexels

而擔任「水與ESG-厚植企業永續競爭力」場次的講者,是來自東海大學國際學院永續科學與管理學士學位學程的 Aleksandra Drizo 教授,她以數據與實際案例,揭露水資源短缺到底有多麼迫在眉睫。

全球有35億人,沒有安全與衛生的水可用

Drizo 指出,聯合國 2023 年公布的 SDGs 第六項「確保所有人都能享有水、衛生及其永續管理」報告中,指出世界上 35 億人缺乏乾淨用水與基本衛生條件,並強調:「獲得安全用水,環境衛生和個人衛生是人類健康與福祉的最基本需求。」而若要達到 SDGs 的 其他目標,又以第六項為最重要的核心,因為唯有確保人人都能用上乾淨的水,才有路徑完成其他目標,例如:第二項「終止飢餓」,就必須在確保有穩定乾淨的水源情況下,才可能達成。

-----廣告,請繼續往下閱讀-----
水資源為 SDGs 中的核心,所有指標與其息息相關。圖/Aleksandra Drizo 簡報
聯合國 2023 年的報告指出, 2022 年仍有 35 億人沒有乾淨用水與衛生環境,其中 19 億人連基本用水門檻與衛生條件都無法達到。圖/Aleksandra Drizo 簡報

Drizo 進一步指出,近幾十年來,儘管在改善飲用水和衛生條件方面有所進步,但仍有大量人口無法獲得安全飲用水和基本衛生設施。根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,對水資源的調度與供給造成了巨大壓力。而在 2023 年世界衛生組織提供的乾淨飲用水調查資料中,直到2022年,仍有 22 億人口無法獲得安全飲用水,也與前面聯合國 2023 年的調查報告呼應,再次呈現水資源問題日益棘手的趨勢。

根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,而未開發國家有近三分之一的人,無法確保乾淨用水。圖/Aleksandra Drizo 簡報

水資源困境並非全是全球人口成長惹的禍,全球氣候變遷造成更加頻繁的極端天氣事件,正讓全球面對過往不曾出現的乾旱。《衛報》2022 年報導歐洲面臨前所未見的熱浪與旱災,法國、荷蘭、比利時、瑞士、義大利、西班牙的河流,已經能直接看到河床,當時西班牙政府宣布限水,表示全國儲水量已達歷史新低,只有總儲水量的 40%,且每周都以 1.5% 的速率持續下降。

2022 年歐洲各地都傳出規模不一的旱災災情,如今西班牙缺水問題仍持續影響當地人民的生活。圖/Aleksandra Drizo 簡報

如今全球氣候變遷造成的水資源問題,也逐漸成為常態,《紐約時報》2023 年 10 月報導,如今西班牙仍處於缺水中,西班牙南部的水龍頭已經流不出水了,甚至連水井都已經枯竭,不只農業無法正常發展,民眾還必須仰賴水罐車或罐裝水維生,根據西班牙政府的報告,若缺水成為常態,則本世紀末將有近 74% 的西班牙國土,將面臨沙漠化的問題。

臺灣也面臨缺水問題

臺灣也未能逃離缺水的命運。2021 年春天,發生了 56 年來最嚴重的乾旱,當時外國媒體全都持續關注這場旱災,深怕缺水影響新竹科學園區的產線。而水利署搶先在 2021 年開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,才讓外媒的擔心沒有成真。

-----廣告,請繼續往下閱讀-----
2021年臺灣大缺水,外國媒體都十分關注。圖/Aleksandra Drizo 簡報

此外,臺灣水污染與地下水過度開採也導致水資源匱乏。要扭轉這一局面,則需要從多方面著手,水利署也已經開始建置相關工程並陸續投入使用,例如:高屏溪的「伏流水」與臺中水楠經貿園區淨化污水再利用的「再生水」,為地方開創多元水源,創造更有保障的用水環境。

Drizo 表示,臺灣的水庫也因氣候變遷面臨「優氧化」問題。由於水庫的水停滯過久,營養物質(氮和磷的化合物,相當於肥料)逐漸累積在水中,加上近年溫度上升,讓水中藻類與浮游生物孳生。在 2023 年的水利署水質檢測報告中,全國 20 個主要水庫中有 8 個水庫的水質已經優養化,這些優養化的水會對淨水廠造成額外負擔,而過濾出來的廢棄物處理也是個難題。

2023 年 7 月,水利署發布的水質調查報告指出,臺灣水庫有水質優養化問題。圖/Aleksandra Drizo 簡報

而 Drizo 針對優養化問題,提出以自然為本的解決方案(Nature-based Solutions, NbS)),並分享過去在各地施行的案例,例如:在 2009 至 2011 年與屏東科技大學的研究計畫,架設的社區小型污水淨水廠,以及用在美國俄亥俄州的農業污水淨水方案。最後 Drizo 分享了將廢棄物轉化生成富營養肥料等高附加價值產品的相關技術研發。也就是說,在淨水的同時,還能把廢棄物轉換為有價值的肥料,這不僅可以提高水資源利用效率,也具有重要的環保意義。

Drizo 的演講代表了學界在水資源問題上的重視,也提到了水利署正一步一腳印地改善臺灣用水環境,那麼身為用水大戶的企業,又有什麼作為呢?

-----廣告,請繼續往下閱讀-----

企業面臨的永續發展難題

臺灣美光記憶體的環安衛、風險管理暨永續發展處處長江頴俊在「水與ESG-厚植企業永續競爭力」場次分享該公司的實際經驗,臺灣美光記憶體透過「綠色基礎設施」、「流程優化」和「設備更新」的措施,成功達成每一滴水重複利用三次的目標,這項措施每年節省約 6000 萬立方公尺的水,相當於 6500 座奧運游泳池的水量。

然而,像美光這樣能提出具體目標與可信成果的企業並不多見,一同演講的法國北方高等商學院基礎建設研究中心 (EDHEC infra)的資深研究工程師 Nishtha Manocha,則說明大部分企業的永續發展目標缺乏 「設定具體可行的環保目標」以及「準確量化環保成果」。

許多企業的永續發展目標僅停留在概念階段,並沒有具體的達成路徑與量化檢核指標,這種模糊不清的目標將無法帶領企業持續行動。而更嚴重的是在量化成果這塊,目前企業仍多以內部數據來評估成效,缺乏第三方機構的驗證,資料的真實性可能會遭到質疑,也衍生出了「漂綠」的相關問題。

同場演講者—資誠聯合會計師事務所所長暨執行長周建宏,則表示「永續發展」已經是熱門的投資標的,投資人也害怕自己把錢給了「漂綠」的公司,最後虧得血本無歸。因此,在投資人的引導下,企業的永續發展目標會更為清晰,加上相關監管機構陸續成立,企業勢必將花更多心思在財報與資料呈現上,不能再打著永續發展的大旗,來跟投資者畫大餅。

-----廣告,請繼續往下閱讀-----

打造全球水未來

在「水與ESG-厚植企業永續競爭力」這場演講中,我們看到政府、企業、學界一同合作,共同討論如何解決水資源匱乏的難題。無論是學界針對水質優養化問題所提出的解決方案,抑或是透過投資人監督,讓企業能落實永續發展目標,都能看見世界正迅速朝永續水資源管理轉型。然而,各項監測指標仍顯示氣候變遷亦在加速,將我們推入未知領域,我們必須加快行動,才不會讓更嚴峻的水資源稀缺成為未來世代的枷鎖。

參考文獻

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
欸害~鱈魚不想死啊!誰來阻止美洲大赤魷!——《下一個物種》
PanSci_96
・2019/07/30 ・2416字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

編按:在上一篇〈如果有一天,魚都不見了~世界會變得怎麼樣?——《下一個物種》〉中,我們從加利福尼亞灣的案例得知,由於溶氧極低層的持續擴張,讓美洲大赤魷取代衰退的魚群,成為了海洋的強勢物種。而本篇則會介紹,當美洲大赤魷佔領了海洋後造成了那些後果?這個現象背後的因素和帶來的發現又有哪些呢?

在鱈魚的悲歌中,美洲大赤魷打了一個飽嗝

美洲大赤魷以加利福尼亞灣的燈籠魚為食,不過,牠們或許更喜歡智利、秘魯以及加州北部的鱈魚。所謂「鱈魚」,其實包含了好幾種隸屬鱈科 (cod) 的大型海洋魚類。過度捕撈和缺氧海水壓縮了鱈魚捕撈業的生存空間,南美洲相關當局正為此傷神。加州北部的鱈魚捕撈業尚未受到海水缺氧的問題影響,但那裡的底棲生物可沒這麼幸運。

俄勒岡州和加州外海,溶氧極低層已經往上擴散,並且愈來愈靠近海岸。「溶氧極低層已和大陸棚相交,並往內陸快速移動,就像一條衝破堤岸的河流,」吉利如此說道,「再者,有許多棲居在海洋底部的生物根本沒有移動能力。」

太平洋西北部美洲大赤魷的數量激增,已經衝擊了脆弱的鱈魚捕撈業

舉個例子,二〇〇九年,在鱈魚魚群出沒的區域,出現了大量美洲大赤魷,據聲納探測估計的結果,該區域的鱈魚數量已經無法滿足美國及加拿大兩國的國定配額。

-----廣告,請繼續往下閱讀-----

鱈魚是美洲大赤魷眼中的美食。圖/WIKI

在美洲大赤魷出沒的海域深度,鮮少有可以制衡牠的捕食者存在。像鮪魚和鯊魚這類用鰓呼吸的有鰭魚可以下潛至溶氧極低層的上界,但鮮少有魚類可以潛入溶氧極低層,在其中待上夠長的時間,並獵捕魷魚為食。每一年,大白鯊會固定移動到夏威夷,來自史丹佛大學的科學家追蹤大白鯊的活動軌跡後發現,許多大白鯊會停留在途中一處他們戲稱為「大白鯊咖啡館」的中洋區。在這裡,大白鯊反覆下潛至溶氧極低層的上方,牠們是在這裡獵食嗎?這個問題目前尚未解答。吉利認為,這些大白鯊下潛可能是為了獵捕美洲大赤魷,或者是同在這裡出沒的南魷 (Purpleback flying squid) 。

科學家發現大白鯊會重複下潛至溶氧極低層的上方。圖/pixabay

死區、深海散射層的推波助瀾,情況繼續惡化

含有肥料成分的逕流自加利福尼亞灣東北方的海岸流入大海,或許增強了該區域的低氧效應。在美國密西西比河河口、中國長江口、東歐黑海盆地、離開挪威、瑞典與丹麥的斯卡格拉克海峽 (Skagerrak) 、開羅盆地,以及委內瑞拉近岸處,這樣的逕流已經打造出所謂的「死區」。目前,全球死區已超過一百五十處。

-----廣告,請繼續往下閱讀-----

死區和溶氧極低層的差異在於,後者是指海岸及中洋環境日光能照射到的最大深度之下,氧氣不足的特定水層。溶氧極低層的縱深介於兩百至七百公尺,科學家測量後發現,過去五十年來,溶氧極低層的氧氣含量下降,垂直及水平的界線都已擴展。

至於日光照射最大深度的水層,又稱為深海散射層 (deep scattering layer) ,二十世紀海軍軍官發現,聲納探測碰到這一層有許多海洋生物聚集的水層時,會得到假性的海床回聲。浮游生物聚集在這裡躲避看得見的捕食者,而浮游生物的食性會耗去水中溶氧,因此形成下方的溶氧極低層。

浮游生物會消耗水中溶氧,促進產生下方的溶氧極低層。圖/BBC

能夠在溶氧極低層生存的海洋生物實屬少數。不過,美洲大赤魷正好是其中之一。進入溶氧極低層的美洲大赤魷,新陳代謝速率會減緩,比起牠們在海洋表面活動時,耗氧量減少百分之二十。特化的鰓使美洲大赤魷以更有效率的方式搜括水中溶氧,追逐獵物時,美洲大赤魷的心臟也不需要狂跳,畢竟牠們的獵物因為缺氧導致行動減緩的程度,遠遠高於美洲大赤魷。「這可不像獅子追逐瞪羚,」吉利說道,「牠們捕起魚來輕鬆多了。」

-----廣告,請繼續往下閱讀-----

加州漁業的重要組成分子,一種體型較小的管魷 (common market squid) ,恐怕無法在溶氧極低層生存。吉利研究這兩種魷魚已長達數十年,他相信,溶氧極低層的擴張會導致美洲大赤魷族群繼續擴大。對有鰭魚類而言,這是個壞消息,畢竟體型較大的魚類為了尋找氧氣含量較豐富的水層,早已集中在深度較淺的海域,導致牠們更容易成為商業漁獲的戰利品。在秘魯和智利沿岸,洪保德海流流經的區域,是全球商業漁獲量最豐富的地方,然而溶氧極低層的狀況正發生,使人不禁懷疑漁獲豐富的情景還能存續多久。

歷史總是驚人地相似

這齣發展當中的悲劇,最主要的凶手可能就是氣候變遷。溫暖的海水含氧量較少,氣候變得溫暖,能夠為表層海水攜來氧氣的風也變少了。結果就是海洋分層變得更明顯,海洋表層較溫暖的海水凌駕下方密度較高的冰涼海水,妨礙了水中溶氧的混合。此外,極區的海冰縮減可能減緩海流循環的速度,而海流可以帶來太平洋和大西洋深層含氧較多的海水。兩億五千萬年前的二疊紀大滅絕,大氣層二氧化碳濃度增加,造成地球暖化,導致海中缺氧,九成海洋生物因此死亡。白堊紀大滅絕的主因同樣也是海水缺氧。

當極區的海冰減少時,可能會讓海流循環的速度下降。圖/pixabay

大目鮪、劍魚和鯊魚可以下潛至溶氧極低層之上,但是很少有魚類能夠長期待在溶氧極低層。抹香鯨、象鼻海豹和一些海龜是最常穿梭於溶氧極低層的生物,然而要能夠承受缺氧的生存壓力,生物必須經過極大的適應。對這些能夠穿梭於此的動物而言,溶氧極低層的上界可謂海中一處隱密的寶地,因為這裡海洋生物數量豐富。

-----廣告,請繼續往下閱讀-----

——本文摘自《下一個物種》,2019 年 4 月,臉譜出版

PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
如果有一天,魚都不見了~世界會變得怎麼樣?——《下一個物種》
PanSci_96
・2019/07/29 ・3480字 ・閱讀時間約 7 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

編按:魚群衰退後將會是哪個物種主掌整個海洋?地球走過 46 億年的生物演替後,生態系依舊瞬息萬變,演化的走向撲朔迷離,我們甚至不清楚現在的地球正面臨何等劇烈的變化,未來的物種的命運又會是如何。《下一個物種》美洲大赤魷的強勢崛起,帶我們一窺海平面下不為人知的故事,並重新思考海洋將來可能的模樣。

曾經的漁獲天堂:加利福尼亞灣

人類活動造成海洋環境變化的事實明擺在眼前,許多變化更是存在已久。位於墨西哥本土和下加利福尼亞半島 (Baja California Peninsula) 之間的加利福尼亞灣就是其中一個最顯著的例子。這裡曾因為擁有豐富的海洋生物,而獲得「下加利福尼亞漁閘」 (Baja Fish Trap) 的美稱。然而,過度捕撈、海洋酸化和暖化,已經改變這片著名海域的生態。曾吸引釣客來此的旗魚、劍旗魚和鯊魚,如今數量急遽減少,改由美洲大赤魷 (Humboldt squid) 和抹香鯨主掌新的生態。

美洲大赤魷似乎逐漸成為加利福尼亞灣的主宰。圖/BBC Earth

這裡的海洋環境依然稱得上原始。開上美國邊境之南的墨西哥一號高速公路,途中景色由火山、山嶽和飽受侵蝕的紅岩組成,穿越連綿的山谷,山谷中有外形如鞭的柱狀福桂樹 (boojum tree) 和巨大的武倫柱 (cardon cactus,一種摩天柱屬的仙人掌) 。邊境以南約八百公里處,海岸山脈的最高峰聳立於此,接著,當山勢走到深受法國文化影響的採礦小鎮聖羅薩利亞 (Santa Rosalía) ,便陡然往加利福尼亞灣的方向下降。六百萬至一千萬年前,下加利福尼亞半島開始和墨西哥本土分離,加利福尼亞灣於焉形成,造就一座地質變化萬千的半島和生物豐富多元的海灣。

-----廣告,請繼續往下閱讀-----

下加利福尼亞半島。圖/WIKI

濕潤的晚風挾帶著專屬海洋生物的鹹味,為聖羅薩利亞鎮帶來涼意,此時漁民正前往碼頭準備上船,展開夜間捕撈作業,這是我最近一次造訪當地的記憶。來自史丹佛大學霍普金斯海洋研究站 (Hopkins Marine Station) ,人高馬大、親切和善,身懷許多有趣故事的生物學家威廉.吉利 (William Gilly) ,帶領一群研究生,跟著漁民同行出海。那時正值九月,每年此時,大自然給加利福尼亞灣的饋贈就是成群的鮪魚、劍旗魚和鯊魚,但近年來,魚群數量大幅下降。

魚群消失後,聖羅薩利亞鎮漁民的新歡是?

如今,聖羅薩利亞鎮的漁民改為追捕美洲大赤魷,牠們已然取代加利福尼亞灣的旗魚。漁民的捕撈作業依舊,只不過從黎明出海改為夜幕降臨後才出海。日落時分,我看著當地漁民加入潘加船隊 (pangas) ──潘加船是一種長近七公尺的小艇,搭載舷外引擎──從沙質海岸出發。當船隊在外海一點六公里處排成一列,加利福尼亞灣的海水也正好由藍轉黑,船上的有色燈泡在傍晚的陰影中閃閃發亮。漁民在手釣線上綁著會發出螢光鈎子,鈎上誘餌,用來釣魷魚。

由於聖羅薩利亞鎮漁民的目標改為美洲大赤魷,因此出海時間也延後至日落黃昏時。圖/pixabay

-----廣告,請繼續往下閱讀-----

這些小艇說明了當地從事小型漁業捕撈活動的漁民愈來愈多,除了船尾那具引擎,他們鮮少依賴現代商漁業所使用的硬體設備。他們在下加利福尼亞半島沿岸外海未受規範的漁場,利用原始工具從事漁業。過去十年來,墨西哥漁業每年收獲五萬至二十萬噸的美洲大赤魷,主要都來自加利福尼亞灣,多數銷往中韓兩國。

美洲大赤魷英文俗名為 Humboldt squid ,乃是根據洪保德海流 (Humboldt Current) 而來。洪保德海流自智利最南端起,沿著南美洲西岸往北流動至秘魯北端。據信,下加利福尼亞半島的美洲大赤魷原本生存在南美洲外海的太平洋海域,而牠們究竟在何時來到下加利福尼亞半島附近的海域,至今仍是個謎。過去的歷史中,有少數幾起美洲大赤魷的目擊記錄發生在加拉巴哥群島以北的海域。

美洲大赤魷 (學名 Docidicus gigas) 不只入侵加利福尼亞灣,還沿著太平洋海岸向北擴散,遠至阿拉斯加,並沿著赤道向西擴散至夏威夷群島。

是誰扼殺了魚群,又推了美洲大赤魷一把?

二十世紀末,海洋中的有鰭魚類,如鮪魚、鯊魚、鰭魚和劍旗魚開始消失,美洲大赤魷似乎頂替了牠們在海洋中留下的空缺。魷魚的生命遠比其他魚類短,很少超過一年半。此外,魷魚的生殖效率高,面對漁業帶來的壓力時,比起生殖效率沒這麼高的魚類,魷魚的族群能夠更快回復。不過,吉利認為還有更重要的因素:魷魚較能適應低氧海水擴散的問題。這個海洋環境中的新興問題,或許是助長魷魚族群增長的推手。

-----廣告,請繼續往下閱讀-----

有鰭魚類魚群開始消失,如鯊魚。圖/pexels

低氧海水區促進加利福尼亞灣的美洲大赤魷生物量 (biomass) 增加,這是氣候變遷造成的後果,原因很可能是因為海洋環流減少。低氧區和死區 (dead zone) 不同,死區是因為農業逕流流入海中而形成,但兩者同時發威將會帶來更嚴重的效應。能在低氧海水中存活的物種並不多,然而,這些低氧環境足以讓物種大量繁殖。各位看看,這不就是及時行樂的世代寫照嗎?能夠容忍有毒環境的少數物種,即將接掌世界,只不過把環境換成海洋罷了

因銅礦開採而促成的海洋監測計畫

十九世紀末,聖羅薩利亞發展為開採銅礦的重鎮,一九二〇年代後,銅礦開採殆盡,繁榮光景也隨之沒落。一八九七年,因興建巴黎鐵塔而聲名大噪的居斯塔夫.艾菲爾 (Gustave Eiffel) 在法國小鎮中心蓋了一座教堂,教堂拆解後,運到聖羅薩利亞鎮重新組裝,說明了這個採銅重鎮當時的財力多麼雄厚。如今,相較於更南方的瓦雅塔港 (Puerto Vallarta) 或阿卡普科 (Acapulco) ,這裡少了炫彩的燈光、酒吧或觀光景點。

近來,開採老舊礦床的新技術問世,聖羅薩利亞的銅礦再度復興。吉利想要知道,如果採礦設備重新運作,會帶來怎樣的長期影響。只不過,這次的礦業復興規模將遠大於十九世紀末,礦工將運用更大型的設備,在早已開採過的地層中,挖掘為數不多的銅礦。

-----廣告,請繼續往下閱讀-----

聖羅薩利亞的礦業復興,正好促成了城鎮的海洋監測計畫。圖/wiki

吉利執行的計畫是在新礦床及其周邊地區,還有位於城鎮北方約三十公里處,一個較受保護的地區,監測潮間帶貝類生物的族群。吉利說道:「如果重新開採銅礦會干擾聖羅薩利亞外海的海洋環境,這項監測計畫的目的就是偵測這些擾動。我們很幸運,能夠在重大變化發生之前,就開始執行監測計畫。」近年,當地興建了一間科技學院,吉利就和這裡的學生一起合作。

溶氧極低層擴張中:喘不過氣的熱帶魚群

不過,此處及世界各地深海區的含氧量變化才是吉利最大的擔憂。他提到一篇德國基爾大學海洋物理學專家羅特.席塔瑪 (Lothar Stramma) 發表的期刊論文,席塔瑪在二〇〇八年主導一項研究,分析太平洋、大西洋和印度洋中六個不同地點的海域含氧量。結果發現,多數地點的低氧海水量都有明顯增加的趨勢,這些低氧區也就是所謂的溶氧極低層 (oxygen minimum zone) ,溶氧量已低於許多海洋生物的致死閾值。在東太平洋,溶氧極低原是一種自然現象,發生在海水上層,而今卻已朝各個方向蔓延至全球海洋。科學家認為,這是全球暖化帶來的改變。

溶氧極低層限制了熱帶海魚──如旗魚和鮪魚──的生存深度,將其棲地壓縮至海洋表層的狹小空間,導致牠們更容易被人類捕撈。

一般而言,太平洋的溶氧極低層的溶氧量較大西洋為低。德國海洋物理學家席塔瑪表示,二〇〇八年的研究中,大西洋溶氧值最低為飽和度百分之四十 (海洋表面為百分之百),太平洋溶氧極低層的溶氧飽和度則接近零。

-----廣告,請繼續往下閱讀-----

這為海洋生物帶來嚴重後果。根據吉利的說法,當海水中的溶氧值只有百分之十,微生物無法利用氧氣、無法進行含氮化合物的新陳代謝,於是釋出威力強大的溫室氣體──硝酸鹽。吉利表示,「溶氧值為零的時候,微生物開始進行含硫酸鹽離子化合物的新陳代謝,並釋放硫化氫,造成致命影響。」二疊紀大滅絕期間,有幾處海洋因為失去海流循環,因而成了一灘死水。史密森尼研究院的厄文認為,出現在大氣中的硫化氫,很可能就是當時造成生物死亡的主要凶手之一。

——本文摘自《下一個物種》, 2019 年 4 月,臉譜出版