Loading [MathJax]/extensions/tex2jax.js

0

7
2

文字

分享

0
7
2

正確診斷不只測眼壓——青光眼患者多數沒自覺!

careonline_96
・2021/04/01 ・1778字 ・閱讀時間約 3 分鐘 ・SR值 502 ・六年級

青光眼的病因有許多種,因此表現也十分多樣化,但它們又會造成近似的視神經傷害與視野變化,因此被歸類在「青光眼」的診斷。臺大醫院青光眼科主任王清泓醫師提醒,多數青光眼病人是沒有自覺症狀,唯有靠定期的眼科檢查,才能早期發現。

眼壓會變動,每人不一樣

王清泓主任說明,眼壓是青光眼重要的風險因子,它的高低會影響青光眼是否會持續惡化,因此眼壓測量是青光眼檢查的重要項目之一。

眼壓值要多少才正常呢?簡單來說,臺灣人正常眼壓值約在 10 到 20 毫米汞柱間,但是有一群人,他們的眼壓高於 20 毫米汞柱,可是其中 90% 的人,可能一輩子都不會發展成青光眼。這些人我們稱之為「高眼壓症」;相反的,另一群眼壓都在正常範圍內的人,他們的視神經、視覺功能卻一直惡化。有人稱這些人是「正常眼壓或低眼壓性青光眼」。

由此可以知道沒有一個放諸四海皆準的眼壓正常值,因為每個人視神經可以承受的壓力是不一樣的,病人也不需要因為今天的眼壓比上次高些,而心驚膽跳,寢食難安;但也不可以因為眼壓在正常範圍而輕忽了治療的必要性,更不要透過參考他人眼壓來揣測自己的病情。

-----廣告,請繼續往下閱讀-----

王清泓主任表示,目前使用的眼壓測量方法,都是透過角膜(黑眼球的部份)測得,角膜的厚薄會影響眼壓的測量。角膜較厚,測出來的眼壓可能會被高估;反之角膜很薄,測出來的眼壓可能被低估。接受過雷射近視手術的病人,因為角膜厚度被削薄,眼壓測量值可能會被低估,因而降低病人及醫師對青光眼的警覺。

另外眼壓也會有晝夜變化,每個人的生理曲線都有所不同,在門診時間所測量的眼壓,往往不是病人最高的眼壓,因此病人要了解,眼壓高低只是評估青光眼的一個重要風險因素,必須合併其他病情,才能做出正確的診斷與治療。

青光眼可能導致視神經盤的凹陷擴大

王清泓主任提到,視神經聯繫眼睛內的網膜神經節細胞和大腦視覺中樞,視神經纖維成束聚集後,穿出位於眼球最後部的開口,而奔往大腦傳達訊息,這個眼球後部的開口就是我們所稱的視神經盤。沒有被神經纖維填滿留下的視神經盤空間我們稱之為視神經杯,或視神經凹陷。

不論是正常人或視神經有異常的人,絕大多數的人視神經盤都有凹陷,但是青光眼病人視神經盤的凹陷,會隨病情而增大或表現出特有變化。經驗豐富的眼科醫師用眼底鏡及細隙燈生體顯微鏡檢查,多數就可以篩選出青光眼的可疑病人,要更進一步確定,可以利用眼底攝影和近十年來發展的定量測量視神經纖維儀器。

-----廣告,請繼續往下閱讀-----

進行視野檢查評估視野缺損

王清泓主任解釋,青光眼病人的神經細胞要損失 40% 以上,才會出現視野變化,多數視野缺損是從週邊先發展出來,再慢慢侵犯到中心,最後危及視力。因此病人自己不容易早期察覺,何況兩眼視野有相當大部分互相重疊,當只有一眼有問題時,更不容易自己發現,只能依賴眼科定期檢查,才能早期發現。

視野檢查只是青光眼追縱和治療的一部份,並不是青光眼最找早期的診斷方法,但是它協助醫師對病情基礎的建立,判斷是否惡化,擬訂或修改治療方針方面,還是很重要,並可幫助和其他疾病並作鑑別診斷。

王清泓主任補充道,我們也稱青光眼是一首三部曲,先有視神經病變,再導致視野變化,最後才造成視力的衰退及失明。因為視神經是青光眼最早有變化的部分,所以觀察視神經的變化就是診斷青光眼最重要的步驟。而長期追蹤時,視神經、視野、視力的檢查各具有不同重要性,要看病況是屬於早期或末期而定。

-----廣告,請繼續往下閱讀-----
文章難易度
careonline_96
568 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
眼睛痛、視線模糊、視力退化?小心!可能是多發性硬化症
careonline_96
・2024/07/05 ・2072字 ・閱讀時間約 4 分鐘

「那是一位 50 多歲的婦女,因為視力變差而就醫。檢查發現是視神經發炎,於是住院接受治療。」臺北榮民總醫院眼肌神經科主任鄭惠禎醫師指出,「腦部核磁共振檢查顯示,除了視神經發炎之外,腦部也有病灶,最終診斷為多發性硬化症。」

剛聽到罹患多發性硬化症時,患者非常難以接受。鄭惠禎醫師說,經過一段時間後,患者漸漸能夠理解這是一個需要好好控制的疾病,也願意聽從醫師的建議接受治療,目前狀況維持穩定,在門診持續追蹤。

多發性硬化症(Multiple Sclerosis,簡稱 MS)是種自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,漸漸造成神經退化、中樞神經系統功能受損。鄭惠禎醫師說,多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。

多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。

-----廣告,請繼續往下閱讀-----

約有 80% 的多發性硬化症患者會表現眼部症狀,而至眼科就診。鄭惠禎醫師指出,視神經炎會造成視力減退、視野缺損、伴隨眼球轉動疼痛、光反射遲緩、甚至失明等;眼球運動系統受到影響,可能出現複視、眼瞼下垂、眼球轉動困難等;中樞神經系統受到影響,可能出現眼球不自主跳動、凝視性麻痺等。

很多原因都會造成視力模糊,大家如果發現有視力模糊的狀況,千萬不能掉以輕心,請盡快至眼科檢查,仔細找出病因。鄭惠禎醫師提醒,至於多發性硬化症患者一定要按時回診追蹤。

「曾經遇過一位多發性硬化症患者,已經發作過視神經炎,但是沒有按時回診追蹤。直到有一天,患者因為視力模糊回到門診。檢查發現患者的視力相當差,視神經已明顯萎縮。若等到視神經萎縮再接受治療,效果大概也相當有限。」鄭惠禎醫師說,「多發性硬化症可能會有一些小發作,而病人沒有明顯的感覺,但是傷害會漸漸累積,神經學後遺症便越來越嚴重。患者務必定期回診!」

積極治療、穩定控制多發性硬化症

針對視神經發炎急性發作的患者,必須先排除感染、壓迫等問題,然後評估是否進行類固醇脈衝治療,以控制發炎。鄭惠禎醫師說,急性期的治療,通常以類固醇治療為主。

-----廣告,請繼續往下閱讀-----

在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

有多種藥物可用於改變病程的治療,包括干擾素、標靶藥物、免疫調節藥物等,醫師會根據患者的狀況選擇合適的藥物。目前也有口服藥物可供 13 至 18 歲之青少年使用,便利性高,有助提升治療遵從度。

多發性硬化症患者務必與醫師密切配合,積極接受治療,減少發作次數,維持生活品質!

筆記重點整理

  • 多發性硬化症是自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,使神經系統功能受損。多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。
  • 多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。
  • 約有 80% 的多發性硬化症患者會表現眼部症狀,包括視力減退、視野缺損、眼球轉動疼痛、光反射遲緩、失明、複視、眼瞼下垂、眼球活動受限、眼球不自主跳動、凝視性麻痺等。
  • 針對視神經發炎急性發作的患者,若無禁忌症,通常會考慮進行類固醇治療。
  • 在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
老花眼怎麼辦?替換老花眼鏡好麻煩,該作雷射手術嗎?
careonline_96
・2024/06/26 ・516字 ・閱讀時間約 1 分鐘

老花眼就是眼睛調節能力隨著年紀而下降。

以前年輕的時候,眼睛像是一台很好的相機,可以看得很遠、看得很近。

所謂的老花就是調節力變差,使我們需戴另一副老花眼鏡,除了近視眼鏡外,還要再加上一副老花眼鏡,來幫助我們看近物。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
568 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站