0

0
0

文字

分享

0
0
0

利用奈米結構打造電子斗蓬

NanoScience
・2012/10/27 ・888字 ・閱讀時間約 1 分鐘 ・SR值 589 ・九年級

美國研究人員受到光學隱形斗篷(invisible cloak)的啟發,提出一種製造「電子斗篷」(electron cloak)的方法。此裝置是由大小約為電子波長的奈米結構所組成,對於電子形同隱形。此新研究可望用來製作新穎電子元件,且可能有助於發展更佳的熱電材料,以增進能量的捕捉及轉換。

科學家已經成功利用超穎材料(metamaterial)製作出能隱匿物體不受電磁波的偵測的「隱形斗篷」。超穎材料是具有特殊光學性質如負折射率的人造結構。這些結構的排列方式使得入射光波沿著斗蓬周圍行進,並在另一端依原路徑射出,彷彿斗蓬並不存在。相同的原則也適用於聲波,使得斗篷對於聲音同樣具有「隱形」效果。

最近,根據麻省理工學院(MIT) Gang Chen研究團隊的理論計算,相同原理甚至能應用於電子上。他們提出製作電子斗蓬的實際設計方式,作法是將的大小與電子波長相當(此研究中約為10 nm)的殼核奈米微粒(core-shell nanoparticle)結構內嵌於半導體中,而且不會干擾電子的流動。

一般而言,電子會以物質波的型態行進一段距離,直到散射破壞電子的波相位。在這段所謂同調傳輸長度(coherent transport length)的距離內,粒子會展現如振幅疊加(即干涉)之類的波動性。團隊成員Bolin Liao表示,在他們的電子斗篷設計中,這些殼核奈米微粒提供了多重介面來反射電子波。透過仔細調整介面,這些反射波彼此間會產生破壞性干涉,以致於幾乎沒有反射發生。因此,擁有「正確能量」的電子波便能穿過這些奈米微粒結構而不被反射,彷彿路徑上沒有任何障礙物存在。

-----廣告,請繼續往下閱讀-----

電子斗篷可以應用在需高電子遷移率的場合,例如半導體電子元件。Chen表示,他們亦能藉此設計新穎電子開關,使其具有對電子「可見」(visible)及「不可見」(invisible)的狀態。此外,電子的散射程度與結構的能量分佈有著相當敏銳的關係,此特性對於需強烈能量相關散射機制的應用有所助益,譬如適合應用於熱電元件中。

該團隊最近正著手打造此殼核奈米微粒電子斗篷,以驗證其理論預測,同時試圖將此概念延伸至低維度結構。詳見Phys. Rev. Lett.|doi: 10.1103/PhysRevLett.109.126806。

資料來源:Nanostructure could help make electron cloak. NanoTechWeb [Oct 1, 2012]

譯者:Yann-Bor Chen (Texas A&M University-Commerce)
責任編輯:蔡雅芝

-----廣告,請繼續往下閱讀-----

轉載自 奈米科學網

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

-----廣告,請繼續往下閱讀-----
探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

-----廣告,請繼續往下閱讀-----

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

-----廣告,請繼續往下閱讀-----

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

2

6
2

文字

分享

2
6
2
牠如何長出一雙「隱形的翅膀」?——玻璃翼蝶的成長日誌
Curious曉白_96
・2021/10/28 ・3597字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !

玻璃翼蝶的成長日誌

玻璃翼蝶,又名寬紋黑脈綃蝶(學名:Greta oto,俗稱透翅蝶),屬於鳳蝶總科的蛺蝶科(Nymphalidae),主要分布在中南美洲的雨林及山區。牠們的卵殼型態非常多變,有些如珍珠般光滑透亮,有些點綴上小撮鱗毛,有些具有雕刻般的紋路。

玻璃翼蝶, 又名寬紋黑脈綃蝶 ,俗稱透翅蝶,為蛺蝶科寬紋黑脈綃蝶屬。圖/EOL

幼蟲時,牠們主要吃的是夜香樹屬的植物,這類植物含有具毒性的生物鹼,且能夠存儲於幼蟲體內,當有些鳥兒吃了他們,輕則拉肚子,重則中毒身亡。玻璃翼蝶向來與眾不同,即便同屬鱗翅目(Lepidoptera),他們卻不與其他蝶一般擁有鱗翅目的招牌特徵 —— 成蟲全身布滿鱗毛,取而代之的是光滑剔透如玻璃般的翅膀,而成蟲的牠們一樣喜愛吃「毒」口味的食物,例如菊科(含生物鹼 (pyrrolizidine alkaloids))、馬纓丹屬植物,讓掠食者們敬而遠之。

鱗翅目招牌特徵 —— 成蟲全身布滿鱗毛。圖/EOL
可從罌粟分離出生物鹼-嗎啡。圖/維基百科

隱形翅膀的誕生

玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。

-----廣告,請繼續往下閱讀-----
  • 成蛹 16 小時

起初牠們與其他鱗翅目物種一樣,蛹翅由一層輕薄、勻稱的上皮組織組成,接著許多表皮細胞已分化為平行排列的感覺器官前細胞(Sensory Organ Precursor cells , 以下簡稱 SOP 細胞)。在翅膀生成前期,帕特爾等人發現翅膀透明區域與非透明區域相比,具有較低密度的 SOP 細胞,因此他們猜測,玻璃翼蝶翅膀上形成透明區域及非透明區域的關鍵點就在於 SOP 細胞密度的差異,導致兩個區域的 SOP 細胞日後受到不同的調節,進而影響成體翅膀上兩區域的鱗片密度和表面翼膜分布具有極端的差異。

  • 成蛹 30 小時

此時玻璃翼蝶身上的 SOP 細胞開始分化成為鱗狀細胞(scale cells)及似人類的神經膠質細胞的界面上皮細胞(socket cells),鱗狀細胞主要位於翅膀內部,而界面上皮細胞肌動主要負責連接每個鱗狀細胞,並位於翅膀較為表層的位置。此外,他們透過染色技術發現翅膀上開始出現由肌動蛋白組成的小圓柱狀增生鱗片,而這群增生鱗片甚至長到超出翅膀表面。這個階段的透明翼區域鱗片細胞型態跟不透明區域的未分化鱗片細胞一樣,像極了一個個被吹成橢圓狀的氣球。

  • 成蛹 48 小時

鱗狀細胞開始延展並擴散生長,這時候透明翼區和非透明翼區要開始分道揚鑣了!非透明翼區(尤其是翅膀周圍有顏色的分界線)有很粗的肌動蛋白束,鱗片細胞呈圓扁狀;而透明翼區的鱗狀細胞開始向上延伸,並產生兩種型態(短小倒三角狀及狹長鬃毛狀)的細胞交替分布於其中。

  • 成蛹 60 小時

透明翼區的短小倒三角鱗狀細胞們的兩個角角開始伸出「觸鬚」,形成兩個似觸角型的細胞並開始延伸生長,而長鬃毛鱗狀細胞的長度早已生長至一定長度,甚至還長到彎曲。非透明翼區的鱗狀細胞則會再長得更長、更寬、更平坦(葉狀),並在尖端處形成鋸齒狀。

-----廣告,請繼續往下閱讀-----
隨成蛹時間翅膀發育變化。 圖中洋紅色螢光為 SOP 細胞,綠螢光為肌動蛋白,粉紅色螢光為鱗狀細胞膜,成蛹 30 小時,透明翼區(Clear)與非透明翼區(Opaque)細胞分布密度差異大,成蛹 48 小時後兩區域細胞開始發展成截然不同的型態。 圖(一)/參考資料3

我們之所以能看到非透明物體具有色彩,是由於物體會吸收部分光線,並將其他光線反射入我們的眼睛。反射程度主要取決於生物組織和環境介質之間的折射率差異,差異越大,表面反射越高。以會呈現透明的水生生物為反例,因為其組織與周遭環境(水)的折射率相近,因此他們就能施展「隱身術」。但是呢!在陸地上,要隱身可難囉~因為陸地生物組織的折射率(n=~1.3-1.5)和空氣(n=1)的折射率差異很大,所以易產生極大的表面反射。

有色翅膀的蝴蝶擁有於一排排扁平、重疊的鱗片,每個鱗片都可以通過色素沉澱產生顏色,並與光於奈米結構層級上進行交互作用,產生所謂的「結構色(structural coloration)」,選擇性吸收特定波長的光,且使光發生散射、漫反射、衍射或干涉而產生各式炫麗色彩。相反地,像透明翼蝶與部分蛾類的翅膀之所以會呈現透明,讓光線穿透,並能夠從透明翅膀區域看見他們身後的物體,關鍵在於他們只含有一層幾丁質膜(chitin membrane,也稱甲殼質),這層膜並不會明顯地吸收或反射光線,因此光線能輕易透射這層膜。

仿生靈感:抗反射材料的誕生

然而,幾丁質膜的加持還不夠,因為幾丁質本身具高折射率(n=1.56),因此即便透明,還是會有反射光。為此,透明翼蝶的翅膀發展出一款新型態的「抗反射構造」,造就此構造的三大功臣:微小且垂直稀疏的鱗片、幾丁質組成的奈米柱、蠟質層。垂直的鱗片能順著光線移動,使光線更容易致穿透翅膀;奈米柱使翅膀顯得凹凸不平,不但能減少因相同角度反射所產生的眩光,還能使光線呈現漫反射的效果;可是,透過電子顯微鏡的觀察,科學家們發現透明翼蝶的透明翼區的漫反射率僅約 2 % (空氣與翅膀介面的比率),後來他們查出這是翅膀表面覆蓋蠟質層的功勞,蠟質層似緩衝膠,因為比空氣密度大,能緩衝光線穿透翅膀的速度,還能大幅減緩光線照射鱗片所產生的眩光,若去除透明翼區的奈米柱及蠟質層,則會使反射率提升 2.5 倍,使翅膀受光照而閃亮。

這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。

-----廣告,請繼續往下閱讀-----

雖然目前研究處於測試階段,但在未來可望將這類新型塗層應用於防眩光的眼鏡鏡片、相機鏡頭、3C 產品的螢幕上,還能用於太陽能板以提升太陽能轉換效率,甚至軍事領域能發展出「隱形效果」的武器或裝備,這就是透明翼蝶帶來的重大效應。

卡爾斯魯厄理工學院研究團隊於 2015 年在《自然通訊》期刊中發表玻璃翼蝶翅膀表面不規則的奈米結構能降低反射。圖/參考資料4

結語

來自杜克大學的生物學家桑克‧強森(Sonke Johnsen)曾指出儘管許多具透明性質的物種都在身體結構上演化出奈米柱,但蠟質層倒是個令人費解的新發現,蝴蝶的幾丁質覆蓋層是個牢固的結構,為何還要加上蠟質層削弱其堅固度呢?因此他認為這個問題的解答或許會發掘出更多酷東西!不過一想到能在大太陽底下使用仿透明翼蝶的仿生手機,不再受惱人的反光所擾,這個對重度使用 3C 產品的捧由們已經是件很酷的事了!

仿生透明翼蝶產品,對人類來說,是一個保護眼睛、免於反光摧殘的一項發明。 圖/GIPHY

參考資料

  1. See through the Glasswing Butterfly’s Fascinating Wings
  2. New images clarify how glasswing butterflies make their wings transparent
  3. Developmental, cellular and biochemical basis of transparency in clearwing butterflies
  4. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
  5. How glasswing butterflies grow their invisible wings
  6. 抗反射塗層 仿透明蝶翼
  7. 科技大觀園:抗反射表面塗層仿生透明蝶翅
  8. 求真百科:玻璃翼蝶
  9. 寬紋黑脈綃蝶:形態特徵,棲息環境,生活習性,分布範圍,繁殖方式,種群現狀,保護級別
  10. MPlus | 隱形的翅膀:玻璃蝴蝶的透明演化之謎
所有討論 2
Curious曉白_96
12 篇文章 ・ 7 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!