0

0
0

文字

分享

0
0
0

低解析度的人類視網膜?

Desiring Clicks
・2012/10/30 ・1354字 ・閱讀時間約 2 分鐘 ・SR值 496 ・六年級

你有玩過寶石方塊或 Zookeeper 這類的遊戲嗎?這些遊戲都需要玩家們快速的在畫面上尋找相同的圖案,然後將相同的圖案放在一起得到分數。但是你有沒有想過,玩這個遊戲的時候,為什麼不能一眼就看完整個畫面呢?明明整個遊戲畫面就呈現在眼前,為什麼我們還要費盡心思才能找到相同的圖案呢?

不管是遊戲設計還是網頁設計,我們都需要和使用者的視覺互動,才有機會快速的獲取使用者的注意力。但是網頁設計和剛剛提到的遊戲相反,需要不停的吸引使用者的注意力才能讓使用者停留在設計師希望他們停留的地方。使用者的視線在瀏覽器上飄來飄去,我們都以為我們可以將整個畫面納入眼簾,但其實我們真正能看到的只有幾個十個像素的大小而已。

主要的原因是人的眼睛的解析度和電腦螢幕不一樣,並不是統一的。人的視網膜的成像是在正中間解析度最高,隨著離眼球中央越遠,解析度也越低,大約就像下面這張示意圖一樣:

如果換個方式解釋,其實就是當物體離開使用者注意的視覺中心 5 公分時,一個英文字母大約要 1.5 公分高(螢幕顯示大約 50 px)才能順利被使用者判讀,複雜的中文字可能就更難說了。

會產生這個效應的原因主要是因為我們視網膜上的細胞主要分為桿細胞和錐細胞兩種(一看就知道是以外型命名),這兩種細胞對不同的程度的光線會有不同程度的反應,但是只有錐細胞密集的集中在視網膜的中央一個被稱為「中央小窩」的位置,而且向四周逐漸減少。所以中央小窩對於光線的敏感程度當然也就遠大於視網膜的其他部分了。

假設我們正在設計的介面有個讓使用者集中注意於一個地方,像是部落格的文字編輯器,那麼使用者的視線就會集中在編輯器上。如果你希望使用者能夠將視線從他注意集中的地方移開,前往你希望他注意的目標(也許是個軟體升級提醒、或是好友通知)。這個目標就需要更大外觀、或者是更鮮豔的明度和彩度,才有辦法順利的刺激使用者的視網膜。

也千萬不要假設使用者的眼睛會一口氣看完畫面上所有的選項,這不只是因為使用者很忙,而是我們身體上的限制。我們一次能注意到的地方很小,要掃描完整個畫面就像是用水彩筆來幫整面牆上色一樣,是非常辛苦而且困難的一件事。設計畫面上的元素的大小除了考慮費茲定律,也要考慮我們肉眼的解析度,才能設計出真正符合人體的優良介面。

 

Desiring Clicks 是一個專門介紹使用者介面、使用者經驗、視覺設計、資訊架構和網路行為的網誌。歡迎你一起參與介面設計,讓這個世界變得更美好。

 

延伸閱讀:

不注意盲視:如同保護色般的視覺效應

完形心理學的視覺法則

 

參考文獻:

[1] 陳一平(2011)。視覺心理學。台灣:翔郁整合行銷。

[2] Ware, Colin (2008). “Visual Thinking: for Design” 

Images via Calvin Merry, _StaR_DusT_, CC License.

文章難易度
Desiring Clicks
14 篇文章 ・ 1 位粉絲
Desiring Clicks(http://dclick.cc)是一個專門介紹使用者介面、使用者經驗、視覺設計、資訊架構和網路行為的網誌。我們相信任何設計、工程都必須由人的角度出發,更貼近人性與心靈,讓世界更美好!

1

27
2

文字

分享

1
27
2
構造設計比章魚略遜一籌?人類的眼睛真的裝反了嗎?!
醫學新人
・2021/08/02 ・2537字 ・閱讀時間約 5 分鐘

眼睛是人類的靈魂之窗,除了能盡收美景之餘,似乎也能透過眼睛去闡述著不同的情感,但是但是,在這漫長的物種演化過程中,偉大的大自然先生竟然悄悄的把盲點藏在我們如此重要又浪漫的眼睛之中,人類的眼睛與其他物種的眼睛相比,難不成是不小心做壞掉的瑕疵品?

從構造設計上來説,人類眼睛和其他物種相比似乎是略遜一籌的瑕疵品?!圖/Pixabay

人類眼睛的結構大解密

要知道這個問題的答案,要從人眼結構開始談起。眼睛能夠幫助人們看到世間萬物,主要是因為在我們的眼球中有一種感光細胞,它能夠感知光源,然後將光的訊號轉換成電訊號,傳達給我們眼球中的神經細胞,而眼球的神經細胞將電訊號帶給大腦,而最後大腦會將收集到的各種電訊號整理成我們每時每刻看到的影像。

從上面的敘述中,我們知道眼睛能產生影像主要有兩個重要的原件:感光細胞 + 傳遞訊號的神經細胞。直覺上來想,我們的眼睛應該要設計成:感光的細胞距離光線越近越好,這之中障礙要越少越好。

但是呢,事實卻很殘酷,光線要到達人類的眼睛之前需要穿過一層一層的神經細胞才能到達感光細胞。除了需要經過層層阻礙,這種設計也會導致感光細胞要讓出一個空位給神經細胞從眼球離開,而讓出的空間即為盲點,也就是眼睛感知不到光線的地方。

左為脊椎動物的眼構造圖,右為章魚的眼構造圖。1 為視網膜、2 為神經細胞、3為感光細胞,4 則是脊椎動物獨有的盲點。圖/Wikipedia

章魚先生的眼睛結構,跟人不一樣!

章魚先生的眼睛設計即為剛剛提過的完美方案:首先光線可以無障礙的“直達”感光細胞,感光細胞再把訊息傳給較深層的神經細胞,神經細胞再將訊號傳給大腦處理影像,整個訊號就從最外層的感光細胞一路傳到最深層的大腦處理器。所以章魚先生眼中的神經細胞就不需要感光細胞的“讓位”,接收到感光細胞的訊號後就可以默默的離場,繼續接下來的傳遞工作。所以章魚先生的眼睛也就沒有盲點這種構造,這能讓他的感光細胞可以無死角的感光!如此有效率的擺設,讓人類的眼睛淪為悲慘的瑕疵品。

章魚先生的眼睛結構從設計原理上來說,比人類的更有效率。圖/Pexels

為了讚歎如此效率的設計,這裡再次簡單的闡述人類與章魚先生的差距。人類眼中的擺設由外到內為:神經細胞 → 感光細胞 → 大腦,感光細胞接受到光線後需要傳訊號給神經細胞,而神經細胞要傳訊號給大腦時,感光細胞由於在兩者之間,所以就必須讓出位置給神經細胞通過,這個被讓出的位置,就沒辦法塞入感光用的細胞,導致人類盲點的出現。然而章魚先生眼中構造的排列由外到內為:感光細胞→神經細胞 → 大腦,感光細胞可以自在的接收光線,傳訊號給神經細胞後,神經細胞也可以自在的離開眼睛直通大腦。

有盲點的眼睛真的比較殘嗎!?

眼睛的盲點區域是接收不到光線,也看不到成像的,但是,在我們的日常生活中,怎麼都沒注意到自己眼睛原來有盲點呢?這是因為我們這一雙明亮的眼睛,平常日常生活中看到的世界,很大部分都是重疊的,所以兩顆眼睛能互相幫助對方,補足對方看不到的盲區,讓我們的視野完整,完全感受不到盲點的存在。

那麼我們要怎麼去體會盲點呢?

利用這個簡單的實驗,可以測試盲點的存在。圖/作者提供

你可以做個有趣的實驗:首先在紙上畫上兩個距離為 10cm 的十字架。然後把左眼閉起來,用右眼去看左邊的十字架,慢慢把紙貼近你的眼睛,過程中你會發現原本在右邊的十字架會“憑空消失”!會有這個現象是因為你的眼睛有盲點,感光神經需要“讓路”給視神經,導致有些地方的光線是感知不到的,所以才導致你沒辦法觀察某個地方的視線。做完實驗的你,可能會嘗試單眼去看看周遭,但是一樣無法發現盲點。那是因為我們強大的大腦很擅長“腦補”,會嘗試腦補我們盲點的區域,讓你擁有一個完美的視野,所以除非是故意去測試或挑戰它,不然平常生活中是很難捕抓到盲點的存在。

人類靈魂之窗的謎底揭曉!

那麼,為什麼人類的眼睛不好好的設計成章魚的眼睛呢,無死角的感光細胞不是很好嗎?

其實人類的感光細胞為“高配版”的感光細胞,如此高檔的感光細胞,讓我們能辨識更多顏色以及各種細微的邊邊角角。如此高配的感光細胞相對來說,需要很龐大的操作步驟,所以人類感光細胞的底層還有一層色素層細胞 – retina pigment epithelium。這種細胞即為感光細胞的管家,能夠幫忙感光細胞分擔其他事物,讓感光細胞能專注於高效率的感光,也讓光線處理的品質達到最優化。故人類的感光細胞要卡在眼球的最深處主要是為了優化感光細胞的品質,從而安排了一個“管家”細胞給感光細胞。

為了讓我們能辨識更多顏色以及各種細微的邊邊角角,人類眼睛的感光細胞才會被卡在眼球深處啦!圖/Pexels

那麼為什麼章魚先生沒設計成高配版的感光細胞呢?這是因為章魚先生處在的環境為海底,在海中的光線很少,如此高配耗能的眼睛對於章魚先生是一個沒什麼用途的功能。此外,章魚先生的眼睛長在兩側,萬一有盲點,兩顆眼睛沒辦法互相代償,會使到他們看到的視野會有視野盲區,這對於身處於弱肉強食的世界來說,是相當致命的存在。所以章魚先生的眼睛寧願選擇低配版無死角版本的眼睛,去看看低配版的美麗世界。

綜上所述,其實人類的眼睛沒有裝反啦~人類的兩顆眼睛很靠近,所以可以互相補償對方看不到的盲點哦!作為盲點的交換,人類獲得了“高配版”的感光細胞,進而獲得了一個不愧於靈魂之窗的高配版眼睛。所以要好好的愛護自己高配版的眼睛哦!

資料來源

1. Boulton, M., Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 15, 384–389 (2001). https://doi.org/10.1038/eye.2001.141

所有討論 1

1

4
1

文字

分享

1
4
1
當視覺訊息進入腦部,哪些區域負責編輯訊息? ——《眼見為憑》
時報出版_96
・2021/06/12 ・2488字 ・閱讀時間約 5 分鐘

  • 作者|理查.馬斯蘭(Richard Masland)
  • 譯者|鄧子衿

噢,為他演奏第一首曲子

把匕首刺進他的心臟

把砧板墊在他的腦下

揀裡面諷刺的顏色

——史蒂文斯

最先發生的事情

從視網膜輸出的訊息由視網膜節細胞的軸突傳遞,傳到腦中的兩個重要部位中細胞的突觸上,這兩個部位是外側膝狀核(lateral geniculate nucleus)上丘

上丘中「丘」這個字的原文是拉丁文 colliculus,意思是「小山丘」。早期的解剖學家會取這個名字,是因為在中腦(midbrain)後側有一個小隆起(「丘」),上丘就位於這個小隆起之上,相當合理的命名方式。上丘的下方是「下丘」(inferior colliculus),和聽覺有關。

從現在的研究結果得知,上丘主要的功能和視覺導向(visual orienting)有關。來自視網膜的訊息抵達上丘,上丘會讓我們注意到這個訊息構成的視覺世界中某個特別的區域。如果用電極刺激動物上丘的一個點,動物的眼睛和頭部會朝向視野的某個位置。如果動物的上丘受到損傷,便會忽略視野中的某些區域,在該區域中出現的事件不會引起動物的注意力。

很不幸,我們無法知道沒有上丘時主觀的視覺體驗會是如何。我們需要由病人的報告才能夠知道這種體驗,但是上丘距離腦中主宰意識的部位約只有一公分,在人腦中發生的損傷往往不只波及到上丘,周邊的部位幾乎都產生了損傷,在這種狀況下,注意力無法集中到視野中某個區域比起來就只是個小問題。

圖中 A 範圍為中腦,標示為 L 處即為上丘。圖/wikimedia

上丘中有許多看起來很有趣的中間神經元,也有很多分枝延伸到腦中其他部位,來自其他部位的分枝也會深入上丘。上丘實際上是一個多層結構,有些層接收的不是視覺訊息,而是由聽覺構成的空間。上丘的確有視覺導向的功能,但是在其中有幾層是讓動物朝向聲音來源,而不是視覺中的某個區域。你閉上眼睛時聽到一個聲音,上丘依然會讓你的眼睛朝向聲音來源移動。在視覺世界中,視覺線索和聲音線索經常來自同一個區域:可能是翼手龍的叫聲,或是拍動翅膀的聲音。在這種狀況下,視覺資訊和聽覺資訊會結合起來,讓你更清楚知道這種史前時代空中狩獵者的位置。

視神經軸突另一個主要的連接目標是外側膝狀核(lateral geniculate nucleus),原文中 geniculate 來自拉丁文,是「膝蓋模樣」的意思,「核」是指一群神經元聚集而成的結構(外側膝狀核的形狀有點色情)。視神經的訊息經由軸突傳到外側膝狀核中的神經元,而這些神經元有許多軸突延伸到視覺皮質。外側膝狀核是訊息傳遞到視覺皮質途徑中最重要的中繼站。外側膝狀核、視覺皮質或是兩者之間的連接途徑受傷,會讓人看不到視野中某些部分。視網膜到外側膝狀核到視覺皮質的途徑,是意識視覺(conscious vision)的主要傳遞路徑。

意識視覺的傳遞路徑。圖/《眼見為憑

如果視網膜節細胞的軸突經由突觸和外側膝狀核中的神經元連接,那麼膝狀核中的神經元對於視覺產生的反應是什麼?從後見之明來看,答案應該很容易就可以推敲出來:如同視網膜節細胞那般的反應,事實上這樣的事情經常發生。記錄外側膝狀核中的神經元活動,發現到這些神經元可以分成主要四群:暫時性開啟細胞、持續性開啟細胞、暫時性關閉細胞、持續性關閉細胞,以及其他「聰明」視覺分析細胞。他們送出的訊息會直接送往視覺皮質。

但是每個研究生都會學到,外側膝狀核並不僅僅是轉接站。我們要讓他們了解這一點,因為他們必須了解到,對大自然來說,把整個核結構放在視網膜和皮質之間,除了傳遞相同的事情之外什麼都不做,是完全沒有意義的。我們從解剖研究中得知,外側膝狀核最大的資料來源並不是視神經,意外的是,從視覺皮質伸到外側膝狀核的軸突,比來自視網膜的軸突多得多,前者占了深入外側膝狀核軸突中的八成。有許多理論解釋這個現象,但是沒有人確實知道這樣龐大的回饋迴路的作用是什麼。有些時候事情就是這樣。

那麼,外側膝狀核的功用到底是什麼?有幾個傑出的實驗室同時記錄了視網膜中節細胞以及這些節細胞軸突連結到的外側膝狀核中之個別細胞。我向你保證,這得有很厲害的技術才能辦得到。那些科學家在貓和猴子中發現到,外側膝狀核其神經元的活躍模式的確和那些送來訊息的視網膜神經元很接近(在小鼠中也是如此,但是其中有一群細胞接收了非常多樣的訊息)。

科學家發現,外側膝狀核其神經元的活躍模式的確和那些送來訊息的視網膜神經元很接近。圖/Pexels

我們也很清楚外側膝狀核加強了邊緣強化的效果:變化交界的點在視網膜中受到強化,在外側膝狀核又更為加強。這種效果是由視網膜和傳遞路徑上的一些中介神經元的連接所造成的,那些中介神經元就是為了強化而存在的。邊緣強化的影響力非常大,在外側膝狀核中有些神經元只對邊緣附近有反應,而對於大片平滑的物體(缺乏邊緣)幾乎沒有反應。

在外側膝狀核中會發生的另一件事,是其他外來事件會讓資訊的力道加強或是減弱,特別是會影響到整個腦部興奮程度的事件。你睡覺的時候,從視網膜抵達皮質的資訊便減少了。這很合理,這就像是搭乘晚間飛機時戴上眼罩。外側膝狀核功能有更為精細的一面:當你的注意力放在不同地方時,外側膝狀核的運作也會隨著增強或減弱。我們認為,如果你的注意力集中在聽覺上,視覺處理便會減少,因此在相同的視覺刺激下,外側膝狀核傳到皮質的訊息會減少。外側膝狀核會編輯傳到皮質的訊息。

所有討論 1
時報出版_96
148 篇文章 ・ 27 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

5
2

文字

分享

0
5
2
你的視網膜,如何調整腦中影像的明暗對比?——《眼見為憑》
時報出版_96
・2021/06/10 ・2248字 ・閱讀時間約 4 分鐘

  • 作者|理查.馬斯蘭(Richard Masland)
  • 譯者|鄧子衿

一個男人彎腰抱著吉他
修剪草木的人,那天是綠色的。
世人說:你有一把藍色吉他
你彈奏得不像樣。
他回答:曲子就是那樣
在藍色的吉他上彈才變樣。——華萊士.史蒂文斯

強化真實世界影像

視網膜細胞一開始處理的另一件重要的事,是強化輸出影像的邊緣。請注意開啟細胞和關閉細胞並沒有改變視覺影像,只是告訴腦接收到的是明亮或是黑暗。邊緣強化是另一回事,因為從這裡開始,原始的影像就沒有忠實地傳遞到腦部了。就腦部那邊來看,影像已經受到強化了,也就是邊緣受到處理,具備了最多的資訊。

邊緣的重要性看起來非常明顯,但是其中包含了一個掌握了視覺非常多面向的核心原理。自然世界呈現出來的像素絕對不是隨機的,自然的影像世界中具有結構:線條、角度、曲線、表面。也就是說,有些像素的出現會受到周遭影像內容的影響。真正的隨機影像世界像是只收到雜訊的電視螢幕。人類的視覺系統能夠加以整理,強化發生改變的結構,並且削弱缺乏變化的區域,例如天空的中央,單一顏色區塊的內部。

天空的中央,單一顏色區塊的內部。圖/Pexels

視網膜產生讓影像邊緣強化的機制是「側邊抑制」(lateral inhibition),這是視網膜所進行的基本程序之一,也是電腦影像生成的基本程序。這時我們再一次去看剛才那個簡單的圖案,那個全黑和全白的區域中沒有什麼資訊,產生變化的點(也就是邊緣)才有最多的資訊。側邊抑制會使得靠近邊緣的節細胞的反應增強。也因為邊緣抑制,腦部接收到的黑色邊緣和白色邊緣的訊息最為強烈。這是視網膜選擇影像世界中重要特徵傳遞給腦部的根本例子。

在行動電話和電腦中也有相同的數位邊緣強化程式。你大概知道數位影像通常都可以用「促進對比」或「邊緣強化」修改。修改後影像會變得更為銳利。當然,天下沒有白吃的午餐,影像中的灰色調往往犧牲了,但是有的時候這個犧牲是值得的。

看到的都是修改過的影像

側邊抑制這個機制普遍存在於感覺系統中,視覺、觸覺和聽覺有,嗅覺和味覺可能也有。所有哺乳動物和許多脊椎動物都具備側邊抑制,這個系統可能很有用,在動物演化初期便出現了,是大自然最早的影像處理技巧。側邊抑制(邊緣強化)為什麼這麼好用呢?

要回答這個問題,我們得把側邊抑制當成視網膜上所有視網膜節細胞所送出訊息的特性。下面這張圖指出了落在視網膜表面上的正確影像(由桿細胞和錐細胞所偵測),在經由幾個步驟的修改之後,由視網膜節細胞送往腦部。

落在視網膜表面上的正確影像,在經由幾個步驟的修改之後,由視網膜節細胞送往腦部。圖/《眼見為憑》

上面那條線代表視覺影像,影像的一半是黑色的,另一半是白色的。中間的那條線代表了由一片視網膜節細胞看到的影像。最下面的那條線代表了節細胞送往腦部的訊息強度。請注意在邊緣地區,由每個節細胞傳遞的訊息是經過強化的,在亮的區域那邊增強了,而在暗的那邊節細胞的反應減弱了。從腦來說,這個機制產生的效果是亮和暗之間的差異(定義出邊緣的訊號)增加了。

為了讓說明簡單,我在這裡用只含有開啟細胞的視網膜當例子,其實另一半的關閉節細胞也有發揮作用,方式是和開啟細胞相反,但是效果相同:增加邊緣附近訊號的差異。我在這裡不會囉嗦說明每個步驟,他們其實就像是開啟細胞,只是行為反過來而已。

為了好玩,我們可以思考一個有趣的事情:如果造成刺激區域的黑色是最黑的黑色,白色則是完全的純白色,那麼黑色的邊緣會看起來更黑、白色的邊緣會看起來更白嗎?如果造成刺激的黑色是純黑,白色是純白,那麼就定義上來說,由開啟細胞組成的系統和關閉細胞組成的系統應該會受到限制,因為他們的反應不可能在零之下,也不會超過百分之百。但是在現實世界中,一個影像的所有部位都會當成是在零與百分之百之間,會比較亮或比較暗,但不會是絕對的亮與暗。當視覺系統遇到從亮到暗的轉變區域時,側邊抑制會用同樣的方式強化訊號,讓我們對於對比的感知更為強烈。這個機制造成了著名的視覺錯覺「馬赫帶」(Mach bands):深淺不同的兩條色帶並在一起時,我們會覺得交界處旁邊深色的區域的顏色要比較深、淺色區域的顏色要比較淺。

馬赫帶。圖/Wikipedia

總而言之,視網膜上的視網膜節細胞有四種基本形式:暫時開啟、持續開啟、暫時關閉、持續關閉,每一種都會受到側邊抑制的影響,所以對於邊緣附近區域產生的反應要比中央沒有變化的區域來得強烈。我們在第四章中還會看到,視網膜其實更為複雜,就如同一篇論文的標題中所說的,「比科學家所想得還要聰明」。但是我們可能要一段時間才發現到有多聰明。在此同時,科技進展讓我們能夠更仔細腦部處理來自視網膜資訊的方式。

時報出版_96
148 篇文章 ・ 27 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。