0

0
0

文字

分享

0
0
0

研究者窺見光子晶體內部

only-perception
・2012/10/18 ・1465字 ・閱讀時間約 3 分鐘 ・SR值 622 ・十年級

雖然今日的智慧手機、平板與其他小型電子裝置依賴的是電氣資料連接,不過在未來,它們可能使用光連接以變得更快與更小。光子晶體(Photonic crystals)對此目的而言是理想的工具,因為它們能在奈米尺度上引導與曲折光線。迄今,研究者未能一窺光子晶體內部以測量光強度(light intensity)如何分佈。現在在一項新研究中,來自荷蘭 Twente 大學 MESA+ Institute 的研究團隊已開發出一種方法,能測光在量光子晶體內的強度分佈。

這項發表在最近一期《Optics Express》上的研究,也許引發對光子晶體的新洞見,能協助新應用的發展。

如研究者的解釋,光子晶體是具有複雜三維結構的材料,其對光的操縱類似半導體控制電子的方式。光子晶體具有週期性結構,其長度尺度近似光的波長。在自然界中可找到的光子晶體例子是寶石蛋白石(gem opal),它由微小的二氧化矽球狀物(silicate spheres)排列而成的規律陣列所組成,排列次序如同晶格中的原子,不過長度尺度卻比光子晶體內的原子大數千倍。

此研究領域的主要目標是製造出與光交互作用的強烈成度足以達到「光子能隙(photonic band gap)」的光子晶體。光子能隙是在某一範圍內被禁止朝任何方向傳播的色光。能隙可起因於結晶體中的失序(disorder),因為失序導致局部態(localized states),那有效使光陷入籠中。此類型的控制能使研究者駕馭光束,並引領它們繞行微小的光晶片。

搞清楚光子晶體內的電磁場分佈對於控制光線很有幫助。到目前為止,測繪局部場的唯一光學方法是近場掃描式光學顯微術掃描晶體表面。然而,這種技術有幾項缺點,因為它無法探測結晶體內部,不過這裡所呈現新方法卻可以。

「我們首度證明,如何看透光子晶體內部,」 Twente 大學的第一作者 Thomas Denis 表示。「利用一種令人驚訝的簡單方法,我們能測繪一個光子晶體內個別場分量(field component)的絕對強度。這樣一種方法對新穎光子晶體裝置(例如電腦晶片上的快速光互連)的設計而言極為重要。」

為了測繪光子晶體內部不同地點的電磁場強度,研究者設置一項實驗,在其中,他們將一個光子晶體置於二面鋁鏡間。在這個共振腔內,光在二面鏡子間來回反射。因為光是一種波,只有波長與共振腔長度相符的波能夠累積。換言之,只有特定顏色能存在於腔內。

在測量晶體的共振色(resonating color),或頻率,研究者接著研究,當他們將光子晶體內,一個懸吊在尼龍繩上的 2mm 珠子降低時,頻率會有何變化。這顆珠子散射鄰近電磁波,以一種與該地點光強度成正比的方式,改變了晶體的頻率。當把珠子移動到不同地點時測量頻率偏移,研究者從而能測繪出光子晶體內部各處的電磁場強度。

「例如,在上面這張圖內,共振腔限制光的累積成藍光,」Denis 說。「把小珠置於光子晶體內時,這導致散射,那改變在腔內共振的光色。光波得要繞個小路繞過這個散射物體。因此,光共振之處的顏色改變了,那能被測量。在圖中,它從綠色到紅色的改變端視珠子的位置而定。藉由將珠子移動到腔內各處,這讓我們能透過測量所造成的色偏移,測繪出所有地點的光強度。」

研究者也解釋光子晶體內的電場有六個分量(components),而這六個分量中的每一個,可藉由選擇適當材質、形狀與方向(orientation)的珠子,僅使某個分量能影響其頻率偏移,從而個別測得各分量。

在未來,研究者也想要進行修改過的實驗,例如將珠子置於當作繩子的奈米碳管上。原子力顯微鏡能控制奈米管的位置並提供晶體內高空間解析度的場。最終,測繪光子晶體內部的能力,將會為這些裝置在未來應用中的使用,提供一種可貴的工具。

資料來源:Researchers glimpse the inside of a photonic crystal. Phys.org [October 2, 2012]

轉載自 only perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
4 篇文章 ・ 2 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1120 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

4
2

文字

分享

0
4
2
蝴蝶翅膀的夢幻色澤,藏著奈米科技
李鍾旻_96
・2021/07/27 ・2988字 ・閱讀時間約 6 分鐘

在昆蟲中,色彩鮮豔又顯眼的物種往往使人著迷,尤其蝴蝶向來是相當受人喜愛的一群昆蟲。一般人見到蝴蝶時,目光肯定會集中在牠們那五彩繽紛的翅膀。

蝴蝶的翅膀表面布滿著無數的鱗片,每一個鱗片的長度大約介於 50 ~ 200 微米之間(1 微米 = 0.001 公釐)。不同種類的蝴蝶,鱗片的形態也會有所差異,但共通點都是非常容易脫落。

包含蝴蝶的鱗片在內,昆蟲身上呈現出來的許多色彩,是由天然色素所構成,這稱作「色素色」(化學色)。但也有部分顏色屬於「構造色」(或稱物理色、結構色),與體表結構的物理性質有關。

結構賦予的幻紫湛藍

構造色通常由週期性排列的微觀結構,如小突起、溝紋等所造就,這些結構使光線產生反射、干涉、繞射等光學效應,而讓特定波長的光被保留了下來。

構造色並常伴隨著「炫彩」特性,也就是色彩光澤會隨著人眼觀看角度的不同而出現些微變化,讓一隻昆蟲顯得璀璨閃耀。有些蝴蝶在展翅時,會呈現出類似金屬、珍珠般的光亮質感,這類特徵往往便是源自構造色。(註:炫彩(iridescent),也常被譯作「虹彩」、「虹光」)

中南美洲叢林中的「閃蝶」Morpho,又稱摩爾福蝶)是構造色相當有名的例子。閃蝶的藍色翅膀鮮豔奪目,質感宛如珠寶,因此身價不凡,是眾多標本收藏家愛不釋手的珍品。

英國自然史博物館收藏的黑框藍閃蝶(Morpho helenor peleides)標本。圖/作者提供

閃蝶翅膀呈現金屬藍色,然而翅表面的鱗片並沒有藍色色素,這樣的炫目的色澤歸功於鱗片上奈米尺度的多層次塔狀結構。當陽光映照在鱗片時,部分光線可能會直接被反射,有些光線則穿過部分結構,接著被底下層次的結構反射,而許多被反射的光線,彼此還可能發生交互作用。最終,鱗片的這些微結構反射了大部分藍色光芒,使得翅表面呈現明亮耀眼的金屬質感。

File:Morpho sulkowskyi wings.jpg
閃蝶鱗片上的細微塔狀結構,其表面又有層層的溝紋與脊起,這是讓光線產生變化的主要因素。圖/Wikipedia

鱗片已經非常的小,當然鱗片上的結構是我們人類肉眼所看不到的,所以科學家在探究這些構造時,必須透過電子顯微鏡才得以一窺究竟。

拿現實生活中的物品來比喻,可以說閃蝶體表閃耀的色澤,性質有些類似 CD 光碟片的表面。光碟片在光線下會顯現七彩的光澤,而這些光澤是光碟表面細小微妙的溝槽造成的繞射效果。

不同角度下的大藍閃蝶(Morpho didius)標本,可見其金屬光澤會隨光照的來源有所變化。圖/作者提供

在台灣的我們,除了博物館裡才有機會目睹的閃蝶,有沒有什麼活生生的例子可以讓我們一窺構造色呢?常見的「紫斑蝶」Euploea),就是很好的觀察對象。牠們不只是數量多,同時又是蝴蝶中動作較為緩慢的種類,因此要近距離接觸牠們並不難。

紫斑蝶前翅背面雖然呈黯淡的褐色,但當牠們展翅時,這些鱗片在陽光下會散發出藍色至藍紫色的絢麗色彩,並且顏色深淺隨著角度的變化非常明顯。這同樣是由於光線照射在鱗片表面的物理結構,反射了特定波長光線的緣故。

圓翅紫斑蝶(Euploea eunice hobsoni)一身深褐色的鱗片平時看似不起眼,但翅背面在陽光下會轉變為鮮豔的藍紫色。圖/作者提供

其實不只是成蟲,構造色也可見於紫斑蝶的蛹。紫斑蝶的蛹呈亮麗金黃色或銀色,炫彩極為明顯,這是由於表皮底下層層排列的薄膜狀結構,對光線產生了影響。

當然,構造色的形式還存在許多昆蟲身上,常見的幻蛺蝶Hypolimnas bolina kezia)、蘭嶼的珠光裳鳳蝶Troides magellanus)都是構造色相當鮮明的例子。一些金屬質感的吉丁蟲、金龜子、灰蝶,其華麗的外觀往往也與構造色脫不了關係。

圓翅紫斑蝶的翅在某些角度下光澤不明顯。圖/作者提供

這一身醒目的光澤,對昆蟲而言可能帶有警告的意味,因為許多鮮豔明亮的昆蟲有毒,或嚐起來具有特殊臭味。日光下閃爍的炫彩也可能具有隱蔽的效果,或者與同種個體間的辨識溝通有關。

圓翅紫斑蝶的蛹,外觀質感如同金屬。圖/作者提供

似白非白的鱗片

我們可能常常直覺的把構造色與光亮的炫彩畫上等號,事實上在大自然裡,生物的構造色不見得都是如此。

我們在平地或山區都有機會見到,分布範圍相當廣的白粉蝶Pieris rapae),身上其實也具有大片的構造色,但我們在牠身上看不到光輝的炫彩現象。

白粉蝶的翅膀,有局部的鱗片具有黑色色素而形成深色斑塊,其他區域則主要呈白色,或略帶有一點淡黃。以往,白粉蝶身上單純的色彩多被認為是色素色,可是那些佔大多數的白色鱗片,實際上並不含白色的色素

白粉蝶的翅膀上有著非炫彩性的構造色。圖/作者提供

在白粉蝶的鱗片表面,具有許多枝狀的構造,其表面又附著了許多如珠子般的微小顆粒,顆粒本身也沒有色素成分。其實是這些顆粒反射了特定光線,導致翅膀呈白色的構造色。

不管是構造色的成因,以及所造就的色彩樣貌,當中複雜且多樣的機制,往往遠超出人類所想像。許多的昆蟲的表皮,構造色與色素色這兩類色源,並時常同時存在,兩者交織構成體表展現的色彩

用「光」代替顏料上色

物理結構形成的色彩,理論上能夠長期存在,能夠避免褪色的問題,人類也從中得到了不少科技靈感,試圖在工業產品上重現這般的顏色。

日本的纖維公司便參考了閃蝶翅膀的原理,研發出不使用化學染料,而是運用物理特性顯現色彩,名為「藍默纖維」(Morphotex)的環保材質。這樣的材質有什麼優點呢?構造色呈色的纖維不需要經過傳統的化學染色製程,能減少產生的廢料,亦減低了水資源與能源的消耗。

陽光下的異紋紫斑蝶(Euploea mulciber barsine),藍紫色光澤明顯。圖/作者提供

如果掌握了不會褪色的顏色技術,還有機會應用在太陽能板塗料、印刷、化妝品、鈔票防偽等方面,幫助解決許多技術問題。

昆蟲及各式動物與生俱來的外貌,有時比人類費力研發出的技術都要精巧得多,甚至可能悄悄改變人類的生活。人類應該善待並維護自然資源,這顯然是很重要的一項理由。

參考資料

  1. What Gives the Morpho Butterfly Its Magnificent Blue?
  2. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411.
  3. Ragaei, M., H.S. Al-Kazafy, N.A.E. Farag, H.H. Elbehery, and A. Abd-El Rahman. (2017). Role of photonic crystals in cabbage white butterfly, Pieris rapae and queen butterfly, Danaus glippus coloration. Biosci. Res. 14: 542-547.
  4. 王仁敏(2017)。蝶翼的絢麗幻色。蝶季刊 2017 卷 2 期:19 – 19。

李鍾旻_96
7 篇文章 ・ 8 位粉絲
目前大部分時間都在觀察、寫作和拍照,曾獲金鼎獎兒童及少年圖書獎、世界華人科普新秀獎、人與自然科普寫作桂冠獎等。著作:《台灣常見室內節肢動物圖鑑》(2021)、《自然老師沒教的事6:都市昆蟲記》(2015)。