0

0
0

文字

分享

0
0
0

研究者發現涉及長期記憶形成的關鍵分子

only-perception
・2012/09/13 ・1640字 ・閱讀時間約 3 分鐘 ・SR值 544 ・八年級

一個人對於某事件的經歷如何轉換成記憶,那能在數月,甚至數年後被存取呢?一個由賓州大學科學家所領導的團隊,對於這個問題的答案,已快要呼之欲出了。他們確認一種關鍵分子,在協助將短期記憶轉換成長期記憶上,至關緊要。這些蛋白質也許會成為藥物的目標,能夠強化記憶,減緩某些認知症候群(cognitive symptoms,認知症狀),疾病特徵包括精神分裂症、憂鬱以及帕金森氏症和阿茲海默症。

Joshua Hawk,現為耶魯博士後研究員,領導這項研究。這項研究是他在賓大神經科學畢業小組時,其博士研究的一部分。他與 Brush 家族生物學教授,Ted Abel 一同研究。其他賓大團隊成員包括 Shane Poplawski、 Morgan Bridi、Allison Rao、Michael Sulewski 以及 Brian Kroener。賓大研究者與 Howard Hughes 醫學研究所與德州大學西南醫學中心的 Angie Bookout 及 David Manglesdorf 合作。

「這裡有許多種藥物能治療這些症候群中的某些疾病,例如精神分裂症,」Abel 說,「但它們並沒有治療病患的認知缺陷,那能包括記憶障礙(difficulties with memory)。這項研究探尋更明確的目標以治療認知中的缺陷。」

這項發表在 Journal of Clinical Investigation 中的研究,聚焦在一群稱為細胞核受體(nuclear receptors)的蛋白質,那涉及各種生物功能的調控,包括記憶形成。

細胞核受體是一種轉錄因子(transcription factor),這種蛋白能與 DNA 結合,並調控其他基因的活性。它們的調控角色也許在記憶形成裡十分重要,因為在腦中透過神經元突觸的強化,將短期記憶轉變成持續很久的記憶,需要基因轉錄。

為確認這種等級的轉錄因子在記憶形成中扮演什麼角色,研究團隊利用一種普通方法訓練老鼠,以創造地點與事件的記憶,其中,動物學會將特殊情境(context)或某些音調關聯到特定經驗。與地點或情境有關的部份,據信是在海馬迴(hippocampus)中被編碼,而與某種線索(cue),例如音調,產生關聯的記憶則被認為在杏仁核(amygdala)中被編碼。

當老鼠暴露在初步訓練後的 24 小時內,檢查全部 49 個細胞核受體基因的表現模式。他們發現其中 13 個,在訓練後的頭二個小時內,在海馬迴中增加表現。有種細胞核受體稱為 Nr4a,其三種成員全都包含在這一組內。這些 Nr4a 基因,先前被發現,在使用某種記憶強化藥物,稱為組織蛋白去乙醯化抑制劑(histone deacetlylase inhibitors),或 HDAC 抑制劑(HDAC inhibitors)後會增加其表現。

科學家接下來創造出一種基因轉殖鼠,他們能選擇性地阻斷這三種 Nr4a 基因的活化。

「擁有這種基因轉殖鼠非常有幫助,」Hawk 說。「我們能操縱它,使得這些 Nr4a 基因只會在腦中某些區域內作用,接著看看老鼠的記憶形成能力會受到什麼影響。」

當研究者使老鼠第二次暴露在訓練情境中時,他們發現基因轉殖鼠與正常老鼠相較,與訓練舉行地點有關的記憶減少了 — 這些記憶位於海馬迴中。相較之下,這些變種老鼠對與線索相關的(在訓練期間播放的音調)杏仁核相關記憶仍完好如初。

「這些老鼠的情境記憶已受損,那意味著某件發生在海馬迴內的事情受到影響,」Abel 說。「那正是阿茲海默症與精神分裂症患者所失去的那類型記憶。」

研究團隊亦證明,變種鼠的短期記憶未受損害。在短期記憶任務中受訓時,牠們的表現,與其正常的同種類似。

此外,科學家在缺乏 Nr4a 的老鼠身上注射 HDAC 抑制劑(那在正常老鼠中會增強記憶),藉此證實這些 Nr4a 基因在長期記憶儲存中扮演了某種角色。這種處置並未強化變種鼠的記憶形成能力,這暗示這種藥物作用在這些 Nr4a 基因上以促進長期記憶的儲存。

最後,研究者為了找出身為 Nr4a 的「下線」分子而篩檢老鼠,而那可能是發訊連鎖(signaling cascade)的一部分,這些細胞核受體藉此協助創造長期記憶。

他們發現二種基因,Fosl2 與 Bdnf1,那顯然是這些 Nr4a 基因的下游目標,而且經 HDAC 抑制劑處理後,基因表現亦增加。

「尋找這些目標就新藥開發而言,大有可為,」Abel 說。「絕大多數的精神分裂症、憂鬱症與其他一些神經失調藥物現在多以神經傳導物質系統(neurotransmitter systems)為目標,而且(這些藥物)也能對許多系統產生影響。在此例中,我們能更明確地改變基因表現。」

「我們在此強化記憶的路徑上能取得更多的選擇權,」Hawk 說,「我們就愈有可能發現有效的藥物。」

資料來源:Research finds key molecules involved in forming long-term memories. Medical X Press [September 10, 2012]

轉載自 Only Perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
資訊量過大啦!我們其實不擅長處理複雜的資訊?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/21 ・1330字 ・閱讀時間約 2 分鐘

誰不接受多樣性?

我們的成長方式具有多樣性。有人長得快,有人長得慢;有人長得高大,有人長不高。這種多樣性是「生物的策略」。不過有個東西並不接受多樣性。就是我們的大腦。

人腦不善於處理複雜的訊息。

有一個法則叫做「神奇數字七法則」,意思是:人類一次頂多只能記住七樣東西。

這是真的嗎?我們來試試看。

請記住以下插圖,限時三十秒。

接著再看下面的圖,什麼東西不見了?

答案是不倒翁。為什麼明明十樣物品也不多,我們就是記不住呢?

再來試試下一題吧。

雖然超過七個圖,但是這一題可能大家都記得住,因為這些圖都與《桃太郎》的故事有關。先找出關聯性,再加以歸納整理,大腦才有辦法勉強記住超過七樣東西。

大腦不擅長處理太多資訊

記憶圖畫或許比較困難,試試看數字吧。

請記住旁邊的數字,限時五秒。

怎麼樣? 是不是太簡單了點!

下面這一組數字呢? 也是限時五秒。

上面這一題是不是也太簡單了!

下一組數字呢? 限時同樣五秒鐘。

如何?

前兩題應該可以輕輕鬆鬆記住,但是第三題就比較不容易了吧?

你知道第三題有幾個數字嗎?

答案是八個。

只有八個!

人類厲害到發明了電腦,我們優秀又傑出的大腦照理說應該能理解一百、一萬,甚至一億個數字。然而實際上,人腦必須費盡力氣才能記住兩隻手數得完的數字。我們的大腦本質上不擅長處理「大量」的資訊。

理解「大量」的方法

如同上述的例子,當題目是文字(圖像)時,只要歸納出《桃太郎》的故事,我們的大腦就更容易理解。

那麼數字呢?

我們來看看下面的數列。

把亂七八糟的數字排成一列,是不是就好記很多?

如果再排成下面這樣呢?

這次是依照數字的大小排序。

我們可以看到「3」有兩個,而 1 到 9 中間缺少了「7」和「8」。經過排列和整理順序之後,人腦就比較能夠理解這些資料。我們的大腦最喜歡把東西排成一列或排順序。學校排成績也是這樣的關係吧?

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

商周出版_96
117 篇文章 ・ 353 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
派大星有頭無身,不該穿褲子?!
胡中行_96
・2023/11/13 ・1775字 ・閱讀時間約 3 分鐘

經典兒童動畫系列《海綿寶寶》(SpongeBob SquarePants)裡,主要角色海綿寶寶、派大星、蟹老闆、章魚哥等,還有其他海洋生物,各個人模人樣。就算沒穿上衣,也至少套了件褲子。[1]這裡其實有個值得深思的前提:任何動物倘若想學人類穿褲子,得先搞清楚下半身在哪裡。[2]而根據 2023 年 11 月登載於《自然》(Nature)期刊的海星論文,[3]我們能大膽宣告:派大星不應該穿褲子。不是會被海水沖走的那種乾脆別穿,而是根本就不曉得該怎麼辦的只好不要穿。

派大星表示:「呃…。」圖/SpongeBob SquarePants on GIPHY

棘皮動物 vs. 兩側對稱動物

海綿寶寶有次請派大星,把新鞋穿在腳上給牠看。「你會想看我穿在…手上嗎?」派大星問。睿智又隨和的海綿寶寶覺得都可以,畢竟手套也能戴在腳上。[4]此處劇情的安排,很巧妙地迴避了一個相當關鍵的問題,那就是如何區分海星的身體部位。

如果今天討論的是狗、蝙蝠、蜘蛛、鯊魚,甚至蛞蝓,這些動物的身體,皆有明確的頭尾以及對稱的兩邊。因此,就算找不到手、腳,也能硬把褲子套在下半身。[2]海星、海膽等棘皮動物(echinoderms),跟昆蟲、軟體動物、脊椎動物一樣,都是從左右對稱的祖先演化而來。[3, 5]現代海星幼年時期的外型,也還是兩側對稱動物(bilateria)的模樣;不過長著、長著就長歪了,變成由數瓣完全相同的單位,所組成的放射狀造型。[2, 3, 5]嘴長在底部中央,肛門則於背面朝上,[2]與擬人化還迸出眼睛、眉毛的派大星,大相逕庭。

海星(左)與海膽(右)成年(上)和幼體(下)的形貌。圖/Grausgruber A, Revilla-i-Domingo R. (02 AUG 2023) ‘Evolution: Tracing the history of cell types’. eLife, 90447.(Figure 1A;CC BY 4.0

海星頭尾的假說

生物學家早已知道,海星內部有內骨骼、肌肉,以及消化、水管和中樞神經系統等。然而,過往對其頭尾的方向順序,卻有多種不同的假設,例如:某隻觸角為首,對面那邊就是尾;每隻觸角各司其職,依序繞一圈,分別擔任從頭到尾的身體部位;由正中央的頭朝末梢,箭靶般向外劃分;或是蛋糕般由下而上層疊,整隻倒栽蔥等。[3]

《自然》期刊這篇論文的美、英研究團隊,抓成年的 Patiria miniata 海星,來跟兩側對稱動物,比較基因分佈,以驗證上述的假說何者正確。比方說,一個活化的基因,若通常位在其他動物的頭部;我們就可以將它出現於海星身上的區塊,也視為頭部。[3]

海星有頭無身

研究團隊在Patiria miniata海星身上,比對到一些活化的前腦(forebrain)、中腦(midbrain),以及中腦與後腦(hindbrain)交界的基因,確定海星有頭部。然後,就沒有然後了。[2, 3]尋遍不著軀幹在哪的研究團隊表示,所謂的「觸角」或「腕」,其實是頭的延伸。[5]總之,以前的那一堆假說全錯,而且海膽等其他棘皮動物,很可能也是這種只有頭的情形。[2]換句話說,符合最新科學描述的派大星,應該是顆嘴巴貼著海床,沒穿褲子的頭,靠著周圍密佈的管足移動、覓食。[5]

「哦~」派大星恍然大悟。圖/SpongeBob SquarePants on GIPHY

多數動物發展出兩側對稱的身體後,不會再走回頭路。[2]海星倒著幹就算了,還在途中搞丟了軀幹,而且不曉得是什麼時候遺失的。研究團隊等於才剛解開一個謎團,馬上又發現了新的問題。接下來可得埋首化石堆,弄清楚海星在演化的過程中,發生了什麼事。[5]

  

參考資料

  1. List of SpongeBob SquarePants characters’. Wikipedia. (Accessed on 05 NOV 2023)
  2. Nature Video. (02 NOV 2023) ‘How would a starfish wear trousers? Science has an answer’. YouTube.
  3. Formery L, Peluso P, Kohnle I, et al. (2023) ‘Molecular evidence of anteroposterior patterning in adult echinoderms’. Nature.
  4. SpongeBob SquarePants: Your Shoe’s Untied/Squid’s Day Off’. IMDb. (Accessed on 03 NOV 2023)
  5. Davis N. (02 NOV 2023) ‘Starfish ‘arms’ are actually extensions of their head, scientists say’. The Guardian, Australia.
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
指甲刮黑板的聲音,為何讓人難以忍受?
雅文兒童聽語文教基金會_96
・2023/10/22 ・2519字 ・閱讀時間約 5 分鐘

  • 朱家瑩/雅文基金會聽語科學研究中心 研究員

想像一下當你聽到手指甲刮著黑板產生的摩擦聲,或者是拿著叉子摩擦著不鏽鋼碗的聲音,抑或是小孩的哭叫聲,有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵,甚至是情緒爆炸、只想要遠離現場呢?這些讓人不適的聲音,是有其特有的聲學特質?或是其他緣故呢?

想像一下指甲刮黑板的聲音。圖/Pexels

不是尖銳、高頻音就刺耳,而是流淌在你我血液的祖先智慧

一般認為,令人不適的聲音是因為刺耳的高頻聲,尤其像是手指甲刮黑板時所產生的摩擦聲,其中那種「ㄍㄧ ㄍㄧ ㄍㄧ」的聲音,似乎是造成不適感的主因。

然而,Halpern、Blake 和 Hillenbrand(1986)這三位研究者對於這個現象感到好奇,因此他們進行了一項實驗 [1],他們將那些令人不適聲音(如:刮金屬或石板的聲音)中的高頻音減弱。

結果顯示,即使減弱尖銳的高頻聲音,受試者仍然感到不適,因而主張尖銳的高頻音並不是造成不適感的主因。接續 Halpern 等人在企圖尋求答案時,意外發現刮黑板的聲音頻譜圖跟靈長類猴子的警告叫聲非常相似,因而大膽推測這個不適感並非高頻音造成的,而是源於人類祖先的記憶。

人類對特定頻率區間的聲音感知最敏感,加上跨感官的連結,讓人聽到某些音就不適

可惜,到底是不是來自老祖先的智慧傳承,這點未獲得後續研究的支持。另一方面,Kumar 等人(2008)進一步以聲學分析探究是否是因特定頻率導致聆聽的不適感時,發現聲音中涵蓋 2500-5500 赫茲這個頻率區間的聲學頻率似乎特別容易引起聽者的不適感 [2]

有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵?圖/Pexels

他們推測這可能是因為這個頻率範圍的聲音感知上最為強烈,同時也具有最高的能量,因此使得聽覺系統特別對這些頻率的聲音敏感。

但是,我們平常聊天談話中也涵蓋了這個頻率範圍的聲音,除了頻率之外,是不是還有其他因素造成對某些聲音的不適感呢?

Ro 等人(2013)發現當聽到聲音時,聲音進入大腦的聽覺皮質同時,會傳遞訊號到觸覺感官系統,啟動了觸覺感官,讓聽者聽到聲音時,「感覺」到自己的皮膚彷彿被指甲刮的刺痛感 [3]

聽聲音會啟動身體觸覺感官系統並非只存在刮黑板這類聲音,有些人在聽到音樂聲,像是聽到低音貝斯的聲音時,也會感覺到自己的身體也在震動,甚至感受到皮膚的不適感 [4、5]

也許因為這個跨感官的訊號傳遞,讓身體的其他部位也出現不適的感受,才會讓聽者對於這些聲音感到不適。

當感知到令人不適的聲音,杏仁核會依據習得經驗,決定是否啟動保護機制!

Zald 與 Pardo(2002)發現當聽到讓人感到不適的聲音刺激時,大腦中的杏仁核(amygdala)會高度活化 [6],而杏仁核在大腦中負責掌控恐懼、焦慮、害怕等負面情緒,換句話說,當聲音訊息抵達杏仁核時,它會誘發情緒反應,進而導致我們做出不同行為反應 [7]

杏仁核的啟動是大腦的一種保護機制,透過過往的經驗連結學習會對讓人不適的聲音發出警報[8] ,當聽者遇到可能危及安全的聲音時,杏仁核就會發出警報。

例如,當聽到車子緊急剎車的聲音時,這個聲音傳送到杏仁核,會進而引起我們想要逃離的反應,或者產生對駕駛者行為的憤怒反應。

由於杏仁核在聆聽這些聲音時會高度活化,Kumar 等人(2012)進一步試圖了解在聆聽令人不適的聲音時,杏仁核在大腦中扮演著怎樣的角色,以及聲音資訊如何被傳遞到杏仁核。

他們的研究結果顯示,聲音刺激會最先傳送到聽覺皮質(auditory cortex)進行聲學訊息處理和分析,解碼聲音所代表的意義,例如,聽到「ㄍㄧ」的剎車聲,解碼出來的是來自汽車或者腳踏車的剎車聲。聽覺皮質處理完畢後,將資訊傳遞到杏仁核,當杏仁核接收到來自聽覺皮質的訊號後,依據這些訊息及過去經驗發出警報 [8],誘發恐懼、焦慮或憤怒等負面情緒,並可能促使進一步的行為反應,像是尖叫、摀住耳朵,或逃離現場。

舉例來說,如果是汽車的剎車聲,基於過去的經驗,可能存在危險,因此可能會誘發恐懼情緒,並引發立馬逃離現場的行為舉動。

有些人基於過去的經驗,聽到汽車的剎車聲,可能會誘發恐懼情緒。圖/Pexels

然而,如果解碼後的聲音是腳踏車的剎車聲,根據過去的經驗,可能不會有危及生命的危險,因此即便會觸發閃躲的動作行為,但負面情緒可能不如汽車剎車聲來的強烈,可能只會憤怒的罵騎車的人不長眼。

聽到某些聲音,讓人立馬想逃或想戰,也許這個過往的經驗是來自遠古時代祖先的傳承,但更可能是因為聽到這些聲音時,觸覺感官系統被啟動了,身體上「感覺」到不適,所以當不適的聲音再次出現時,杏仁核的活化反應就更增強,讓我們除了單純的接收到聲音之外,也產生了身體及情緒上的反應。

參考文獻

  1. Halpern, D. L., Blake, R., & Hillenbrand, J. (1986). Psychoacoustics of a chilling sound. Perception & Psychophysics39, 77-80.
  2. Kumar, S., Forster, H. M., Bailey, P., & Griffiths, T. D. (2008). Mapping unpleasantness of sounds to their auditory representation. The Journal of the Acoustical Society of America124(6), 3810-3817.
  3. Ro, T., Ellmore, T. M., & Beauchamp, M. S. (2013). A neural link between feeling and hearing. Cerebral cortex, 23(7), 1724-1730.
  4. Koenig, L., & Ro, T. (2022). Sound Frequency Predicts the Bodily Location of Auditory-Induced Tactile Sensations in Synesthetic and Ordinary Perception. bioRxiv.
  5. Lad, D., Wilkins, A., Johnstone, E., Vuong, Q.C. (2022). Feeling the music: The feel and sound of songs attenuate pain. British Journal of Pain, 16(5), 518-527. 
  6. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. Neuroimage16(3), 746-753.
  7. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience23(1), 155-184.
  8. Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32(41), 14184-14192.
雅文兒童聽語文教基金會_96
52 篇文章 ・ 210 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。