0

0
0

文字

分享

0
0
0

誰破壞了「男同志穴居人」的出櫃派對?

鄭國威 Portnoy_96
・2011/04/12 ・2639字 ・閱讀時間約 5 分鐘 ・SR值 513 ・六年級

前天跟昨天在推特上都看見幾位我follow的朋友轉推一則有趣的新聞,標題是「史上首位男同志墓穴 捷克出土」(這個連結是自由時報的,不過其他台灣媒體應該也有報導);然而因為最近太忙太累,所以雖然覺得挺稀奇,但連點進去看的興致也沒有。剛剛在找資料,湊巧在Google新聞上又看見這則新聞,於是就手癢點進去看;一看是編譯自超級科學八卦報之一的《英國每日郵報Daily Mail》(另一個是英國電訊報The Telegraph),警覺性馬上提高120%,仔細看看內容,更是覺得莫名其妙,再加上報導照慣例沒有附上原始資料鍊結,於是便想看看國外科學部落格圈是否有討論這則消息。

就如「Bone Girl」部落格的作者暨生物人類學家Kristina Killgrove所說,電訊報跟每日郵報簡直是天天逼著科學部落客寫文章反駁他們的報導,這次更是引起眾怒。電訊報對這次「考古發現」下的標題是「發現首位同志穴居人」(First Homosexual Caveman Found),每日郵報則更過份一點:「5千歲的同志出櫃了,被他遭埋葬的方式所透露」(5,000-year-old Is Outed by the Way He Was Buried.)。標題一如往常般聳動跟羶腥,彷彿在報導明星跟政治緋聞一樣,但你看出來錯誤在哪裡了嗎?

就如同另一位科學部落客John Hawks所說的:「老兄,我可能是錯的,但是要聲稱發現男同志穴居人,你得有副既是同志又是穴居人的骨骸,可是事實上你什麼都沒有!」。「穴居人(Caveman)」其實我們都很熟悉,像是小時候就學過的北京人藍田人元謀人尼安德塔人克羅馬農人,以及更後期的周口店山頂洞人都算是。這些穴居老祖宗屬於舊石器時代,約莫是260萬年前到1萬年前的人類,然而這次在捷克布拉格附近發現的骸骨,存活的時期約為西元前2900年到2500年間,也就是每日郵報標題所指的5000年老Gay,怎麼算都不會是舊石器時代以穴居為主的狩獵族群,而該是接近青銅時代初期的農村居民才是。沒有任何證據顯示這副骸骨的主人生前孤僻地一個人躲在洞穴裡居住,該不會是記者想要把「出櫃」跟「出洞」串在一起才這麼形容的吧…?

再者,報導中提到這副骸骨擺放的位置、方向、以及陪葬的器物都跟青銅時期繩紋飾陶器文化的「既有作法」不同,因此認為這位「男性」死者生前應該有著「另類性向」、「第3性」、「變性人」、或是「變裝癖」… 我只能說,這實在是亂七八糟的假設。

男性?從這張唯一被釋出的照片中,你能判斷這副骸骨是生理男性還是生理女性嗎?我不是專家,我判斷不出來不稀奇,但是即使是專家也不一定判斷正確。Life Science的作者Stephanie Pappas訪問了密蘇里Drury大學的考古學家Monty Dobson,他表示一般來說,考古人員是靠骨盆的尺寸與形狀來判斷生理性別,但是並不準確;而Kristina Killgrove說這種依據視覺(或人相學)的特徵來考古的方式(anthroposcopic),即使讓最有經驗的骨骼學者在最完整的骨骼情況下來判斷,都只有95%的準確度,簡單來說,20次裡頭就有可能有一次是錯的。根據報導,發現這個墓穴的考古人員還沒有進行DNA測試,所以骸骨到底是男是女還很難說。在考古研究中,肉眼判斷性別錯誤不是不會發生的事。

男性跟女性骨盆的比較。圖片引用自Afarensis

最後則是媒體報導的大誤之處。報導說考古團隊的Kamila Remisova Vesinova說「根據上述資料,我們認為他可能是第3性的成員」,伊朗的電視台PressTV應該是唯一有電視報導的媒體,請看這裡,證實的確是有說過這句話,然而PressTV他們的標題也只是忠實的「古代墓葬點於布拉格出土」(Ancient burial site unearthed in Prague)。其他的媒體則如我們所知的加油添醋。 關於性的議題,可以再分成3個層次來駁斥:

  1. 這些資料何以足夠支持墓穴中的人就是因為具有另類的性向、性徵、性癖好才會被以這種方式入葬呢?為何不是階級、信仰、職業、出生地、家族、身份、經歷…等等其他因素決定他的入葬方式呢?就如同「Genealogy of Religion」部落格作者,人類學博士生Cris Campbell所說,Shaman/薩滿巫師/通靈人的墓穴通常跟一般人不同,而且變化很大,墓穴主人是薩滿的可能性不該被武斷否定。
  2. 性向、性徵、性癖好根本是3個不同的東西,但是卻被媒體混在一起亂講。喜歡扮女裝的生理男性不一定是男同性戀,不喜歡女生的生理男性說不定是心理女性,而且性向、性徵、性癖好都不是二元的,而是在一條光譜上排列的無數可能。媒體自得其樂地把報導寫成5千年前的男同志終於出櫃,顯然也刻意扭曲了報導中考古學家的本意,即便我並不同意這些考古學家的看法。
  3. 性向、性徵、性癖好在5千年前的歐洲真的是一件已經可以被判斷出來的事情了嗎?有任何證據證明嗎?更何況,以現在我們所能知道的,Gay這個詞所指述的概念,是非常現代化的,在歐洲最早只可追溯到150年前,哪來的五千年老Gay呢?這種調侃的用詞說法用在科學報導上實在不恰當。[關於歐洲性別史可參考The Invention of Heterosexuality 一書]

而且,這批考古學家的發現,至今還沒有提出同儕評審的論文,而是先開了記者會。也因此即使我們認為各媒體的報導可能都有誤差,但是卻也只能就媒體報導的內容來反駁。記者也不應該如何對還沒有經過同儕檢驗過的科學新發現用那麼誇張的方式報導。很遺憾的,這次電訊報跟郵報都沒有去訪問其他相關領域研究者的意見,就囫圇吞棗地發了這些報導,就如同先前NASA的砷基生物事件一樣。

最後,我還是要回過頭來對台灣主流媒體的新聞編譯喊話:我知道英國電訊報跟每日郵報有固定的科學版,而且量很大,標題又都下得很刺激,而且你也大概跟我一樣,認為去編譯科學新知報導起碼比總是跟在藝人跟政客八卦後頭來得有教育意義一點點,但是,請至少做一點基本的事實考究,你才不會變成幫助謠言跟假科學傳播的幫兇。還有,請儘量去跟你的上司表示你希望能夠提供資料來源在網站上,起碼讓有好奇心的讀者能夠自己追根究底。

對於各位讀者,如果你真的覺得每次都受騙很煩的話,就來看PanSci吧。覺得哪則主流媒體的科學報導可能有鬼,也歡迎到PanSci的臉書發問跟分享囉!

延伸閱讀:

CNN:Scientists speak out to discredit ‘gay caveman’ media reports
Salon:The “gay caveman” media mystery

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 657 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

2
1

文字

分享

0
2
1
生兒子還是生女兒?動物性別決定靠光線、細菌、掉落地點,與腳程快慢!
Mirror Voice_96
・2022/09/28 ・3523字 ・閱讀時間約 7 分鐘

本文轉載自 鏡好聽—知識好好玩節目

人類的性別,男女的比例接近 1:1,那其他動物也是如此嗎?我們是由染色體決定性別,大自然中又有哪些讓人意想不到的性別決定方式?由鏡好聽攜手國立自然科學博物館館長焦傳金博士,共同製作的 Podcast《動物好好玩》第三季第二集中,就談到了動物各種奇特的性別決定模式。問題看似簡單,但其實,動物界中有很多我們意想不到的性別決定方式!

以下文章摘自節目中的精彩內容:

動物的生殖系統不只 XY,還有 ZW、X0、 Z0 !

以人類而言,我們是由性染色體決定性別。雄性是 XY,雌性是 XX。

在現今的哺乳動物中,Y 染色體的長度遠小於 X 染色體,因此 Y 染色體上的基因數量遠少於 X 染色體。不過大約 1 億 6 千萬年前,XY 染色體上的基因數量是一樣的,但因為 Y 染色體上突變出一種性別決定基因,因此讓它出現差異。

人類男性的核型;可明顯看出,Y 染色體的長度遠小於 X 染色體(右下最後一對)。圖/維基百科

這個性別決定基因出現在 Y 染色體之後,它就跟其他成對的體染色體不同,也因此無法藉由基因重組,來互相交換遺傳訊息,即使有了缺損也無從補充。這導致了 Y 染色體持續退化,長度越來越短,基因數量也越來越少。目前人類的 Y 染色體長度已經不到 X 染色體的三分之一,基因數量也有很大的差別。

根據這樣的推論,未來 Y 染色體是否會完全退化消失呢?雖然我們無法預期人類 Y 染色體的命運,但已有學者發現,日本刺鼠和鼴田鼠已經完全失去了 Y 染色體,只剩下 X 染色體。他們雖然仍可正常維持雌雄兩性,但性別決定基因究竟是在哪一個染色體上,目前還沒有研究出來。

不過,生物界不只有 XY 系統,還有 ZW、X0 與 Z0 系統。在 XY 系統中,XX 是雌性、XY 是雄性,由 Y 染色體 /雄性來決定性別。但 ZW 系統則相反,ZZ 是雄性、ZW 是雌性,性別由 W 染色體決定,也就是雌性決定。鳥類就是屬於這一種系統,包括雞、鴨,另外蠶寶寶也是屬於這種 ZW 系統。

雞屬於 ZW 系統。圖/Pexels

至於 X0 ,意思是這個系統只有一個 X 染色體,沒有 Y 染色體,0 代表沒有。他們是由精子中是否有 X 染色體來決定性別,因為每一個卵一定有 X 染色體,當受精卵中有兩個 X 染色體,XX 為雌性,而X0 則為雄性。蝗蟲、蟋蟀這些直翅目昆蟲,都是屬於 X0 系統。

Z0 系統則相反,ZZ 是雄性、Z0 是雌性,決定關鍵在於卵中是否帶有 Z 染色體,也就是由雌性來決定性別。目前科學家已經發現,鱗翅目的昆蟲,像是夜間的蛾類就是屬於 Z0 系統。

霸氣女王蜂的儲精囊,還有靠積分制決定性別的劍尾魚

但昆蟲作為地球上種類與數量最多的生物,他們還有許多複雜多樣的性別決定方式。

決定蜜蜂性別的關鍵在於是否受精。圖/Pexels

像是蜜蜂大部分都是母的,但一個蜂巢中只有女王蜂有生殖能力,每年到了交配的季節,女王蜂就會離開蜂巢進行「婚飛」,與雄性的蜜蜂在空中交配。交配後的精子會暫時存放在女王蜂的儲精囊,由女王蜂決定是否讓她的卵受精。如果是受精卵,就會變成雌性的蜜蜂或是「工蜂」;沒有受精,則是雄性的蜜蜂。因此,決定蜜蜂性別的關鍵在於是否受精。生男或生女,通通由女王蜂自己做主!

除了蜜蜂,其他的社會性昆蟲,例如:螞蟻或白蟻,也都很類似,由受精與否的染色體數量來決定性別。如果有受精而獲得成對的染色體,就是雌性;沒有受精,只有一半的染色體,就會發育成雄性。

還有一些魚類也很特別,例如:劍尾魚和多種吳郭魚,他們不是全靠性染色體來決定性別,而是合成加總。因為細胞中的其他染色體上,也有性別決定基因,因此,決定性別的方式是看基因總量,如果受精卵中所有決定雄性的基因總量,超過了決定雌性基因的總量,就會發育成雄性,很像是比賽的積分制,哪邊多就脫穎而出。

總而言之,雖然有些動物是 Y 染色體決定,有些是 W 染色體,但這些都是由基因決定。這種生殖方式,性別比例通常是固定的。但還有另外一些動物,他們決定性別的方式就非常彈性!

更彈性的性別決定方法:氣候、光線、掉落地點

烏龜的性別是根據環境條件決定的。圖/Pexels

地球上早期演化成功的爬行類,如烏龜或蜥蜴,出生性別會由環境中的溫度來決定,換句話說,精卵結合時還是性別不明的狀態,等到胚胎中的性器官要發育,才會根據環境條件決定會生出男寶寶或女寶寶。

這是因為對這些動物來說,最好的生存策略,就是在氣候最合適的時候誕生體型比較大的雌性,這樣就可以在食物充份下,產生最多的卵,讓族群能夠大量繁殖。反之,若環境條件較差,則產生體型比較小的雄性,因為精子含的養分較少,細胞也較小,就算是惡劣的環境下也能產生足夠數量的精子,讓族群延續。

以海龜來說,海龜蛋要孵化時,沙灘與周圍環境的溫度會決定小海龜的出生性別。假如環境是 20℃ ~27℃ ,孵化出的全部都是雄性海龜,若是 30℃ ~到 35℃ 下,孵出來的小海龜則都是雌性,在 28℃ ~29℃ 之間,雌性與雄性的比例會各半。簡單來說,高溫環境會生出母海龜,低溫環境會生出公海龜,也就是所謂的「辣妹與酷哥」。

不過,也不是所有爬行類動物都是「辣妹與酷哥」型。鱷魚就剛好相反,他們的胚胎在 30℃ 以下孵化出的幾乎都是母鱷魚,若高於 32℃ 則大部分是公鱷魚。沙漠中的陸龜或蜥蜴也很類似,低溫時才會產生雌性。因為在沙漠中,高溫會造成食物缺乏,所以在低溫的雨季更適合生出雌性,讓族群大量繁殖。

除了溫度之外,還有一些動物非常特別,性別是由光線決定。例如,中國特有的揚子鱷 (又稱做中華短吻鱷),主要分佈在長江中下游地區,是世界上體型最細小的鱷魚之一。如果巢穴在潮濕陰暗的地方,就會孵化出較多的母鱷魚;若巢穴能曝曬到太陽,就容易生出公鱷魚。

揚子鱷是中國國家一級保護動物;IUCN 列為極危物種。圖/維基百科

寄生蟲又是另一種類型。他們的性別也會受到環境影響,但對寄生蟲來說,環境其實就是宿主的養分多寡。例如:許多線蟲是靠營養條件來決定性別,他們通常在性別未分化的幼齡期,就侵入了宿主體內,要是感染率低,也就是線蟲數量還不多、營養條件比較好時,多數線蟲會發育成雌性;但當感染率高,營養條件開始變差了,大部分就會發育成雄性。

還有一種生物更神奇,竟然是由另一種寄生的生物來決定性別。或許有人聽過一種叫做「鼠婦」的動物,他們是陸地上的甲殼類動物,生活在潮濕陰暗的環境,因為外型可愛,受到驚嚇時會捲成一團,所以也被當作懶人寵物來飼養。

鼠婦的性別是 ZW 系統, ZZ 發育成雄性,ZW 成為雌性。但有一種稱做「沃爾巴克體」的微生物會感染雌性的鼠婦,進而干擾雄性胚胎的生殖器官發育,讓所有的胚胎都變成雌性,就算染色體是 ZZ 也一樣。這樣一來,能決定性別的就不再是 W 染色體,反而由胚胎是否被細菌感染來控制。

最後,還有一種隨機的性別決定方式。有些寄生的甲殼類動物,他們竟然是用先後順序來決定性別。跑得比較快、先到達宿主的幼蟲,長得比較大,會發育成雌性;若腳程慢、更晚到達宿主的幼蟲,長得比較小,則發育成雄性。另外呢,有一種綠海洋蠕蟲更加隨興,就只看幼蟲掉在哪裡,如果直接掉在海底就發育成雌性,要是掉在雌性身體上則變成雄性,完全由命運隨機做主!

從動物的性別決定方式,不僅能看到不同的生殖策略,同時也影響了一個族群的性別比例。性染色體決定了哺乳類與鳥類胚胎的雌雄,爬行類動物的性別則由環境決定。這些性別決定模式,會影響一個族群的雌雄比例,也因此並非每一種動物都像人類一樣,男女比例大約是1:1,當雄性比較多或雌性比較多的時候,動物的生殖策略就會產生不一樣的應對變化。

《動物好好玩》收錄於 Apple PodcastSpotify 中的《知識好好玩》系列,歡迎關注追蹤,收聽更多精彩內容。

Mirror Voice_96
1 篇文章 ・ 0 位粉絲
鏡好聽長期經營「知識好好玩」Podcast,找來各領域的專家、教授,分享包含動物、哲學、犯罪心理學、物理等知識。

1

1
1

文字

分享

1
1
1
歐洲人克服乳糖不耐,少拉肚子就是達爾文贏家?
寒波_96
・2022/09/16 ・3812字 ・閱讀時間約 7 分鐘

牛奶、羊奶等生乳中含有乳糖(lactose),可以被乳糖酶(lactase)分解。但是小朋友長大以後,乳糖酶基因便不再表現,失去消化乳糖的能力。幾千年前,世界各地卻出現多款基因突變,讓人能一輩子保有乳糖酶。2022 年一項針對歐洲的研究提出觀點:這項能力之所以受到天擇喜好,是因為能避免拉肚子!?

人類如今也發明去除乳糖的牛奶。圖/被拍電影耽誤的置入性行銷之神──Michael Bay 麥可貝

史上最強遺傳適應,演化過程出乎意料?

人類原本和眾多哺乳動物一樣,小時候依賴母乳餵食,長大後不再喝奶,乳糖酶也失去作用。但是隨著人類馴化牛、羊等動物,即使是成年人也常有機會吃奶。

另一方面,由於乳糖酶基因外頭的調控位置突變,使得許多歐洲、非洲人的酵素在成年後可以持續作用,稱為乳糖酶持續性(lactase persistence,簡稱 LP,也就是乳糖耐受),而且同樣效果的不同突變,至少獨立誕生過 5 次。

具有某方面優點,使得存在感增加的 DNA 變異,稱作遺傳適應(genetic adaptation)。已知的人類案例非常多,天擇的影響力有強有弱,LP 算是受到最強烈天擇力量的基因之一。

由此推敲,當人類開始養牛、養羊,又吃奶以後,同時衍生 LP 應該是順理成章的事?然而,一系列考古學、遺傳學、古代遺傳學的探索,卻徹底打破上述看似合理的推論。

首先,考古學調查發現人類在中東馴化牛、羊,吃奶的歷史至少有 9000 年,接著距今 7000 年前已經引進歐洲多處。再來,由遺骸中直接取得古代 DNA 得知,LP 遺傳變異要等到 4000 多年前才出現,而且超過 3000 年前都還很小眾,最近 2000 年內才大幅提升存在感。

顯而易見,人類開始吃奶的年代,比獲得成年後消化乳糖的能力,更早好幾千年。 2022 年新發表的研究透過更廣泛的取樣分析,再度確認這件事。

由陶器中取樣乳脂質的地點和年代。圖/參考資料 1

再度確認:吃奶比遺傳突變更早好幾千年

隨著技術進步,如今有好幾種方法判斷古代人會不會吃奶,像是分析牙結石中的乳蛋白、容器中的乳脂質等等。新研究偵測陶器中的乳脂質,包括以前發表 188 處,以及新取得 366 處,總共 554 處中東、歐洲的遺址中,得知 6899 件乳製品存在的紀錄。

吃奶的文化能追溯到中東,新石器時代擁有農業的人群,帶著他們的牛、羊一起移民歐洲,也將吃奶文化傳入歐洲。到了距今 7000 年前,歐洲各大地區已經出現乳製品。也許不見得會直接喝生乳,不過肯定存在起司等生乳加工的食品。

比較特殊的是巴爾幹半島,現在的希臘。那時居民會養牛,養羊,吃肉肉;但是分析超過 870 件陶器,完全見不到乳脂質的蹤影。此處或許更晚才建立起吃奶文化。

總之,7000 年前吃奶文化已經廣傳歐洲各地。相比之下,比對不同年代、地點的死人骨頭取樣,消化乳糖的 LP 遺傳變異最早在 4600 年前現蹤,比吃奶晚很多。

而且 LP 出現一段時間後,存在感依然非常低,距今 3000 到 5000 年前的青銅時代,LP 並沒有什麼過人之處。到此為止,LP 只能說是人類族群中的一款普通變異,還不能算是遺傳適應。

不同年代,歐洲各地的吃奶狀況。距今 7000 年前之際(5000 BC)吃奶已經相當普及。圖/參考資料 1

現代社會:能代謝乳糖沒有好處,不能代謝只有小小壞處

儘管比本來以為的晚很多,LP 遺傳變異在歐洲族群的比例,還是於最近 3000 年內明顯上升。它到底因為什麼優點才受到天擇青睞,歷來爭論不休,有人提出營養、維生素D 等假說,可是都缺乏決定性的證據。

搜集幾十萬人遺傳資訊的英國生物樣本庫(UK Biobank),近來被大量用於各色分析。這項研究從中探討 LP 的影響,分析對象中大部分人具有 LP,少數人沒有(論文用語是 lactase non-persistent,縮寫為 LNP,也就是乳糖不耐)。比對得知,LP 並不會影響喝奶、食用乳製品的行為。

直接喝奶才有乳糖代謝的問題,加工成起司等乳製品可以避免,但是「問題」也許不是真的問題。更進一步比對,LP 對於健康狀況也沒什麼影響。簡單說就是:對 33 萬位英國人的分析發現,LP 與否,無關緊要。

加上其餘資訊推論,現代社會在正常情況下,缺乏 LP 大概就是喝奶拉肚子,不是什麼嚴重的問題。例如隨著中國經濟發展,沒有 LP 的中國人大量喝奶,多數也沒怎麼樣。

這也符合台灣人的經驗,台灣人配備 LP 的比例不高,可是隨著飲食習慣改變,多數人也就是這樣喝奶。另外喝奶會改變人的腸道菌,影響消化狀況,也是一個影響因素。

普遍缺乏 LP 的台灣人,很多人也是生乳照樣喝。圖/[廣宣] 牛奶妹 徵求中興大學牧場鮮奶長期訂戶

飢荒、疾病,時代力量的逆境考驗?

為了解釋歐洲歷史上 LP 比例的大幅上升,許多論點提出喝奶的優點,但是想想頗有可疑。把鮮奶加工製成乳製品,就能輕易抵銷 LP 問題,即使是飢荒時節也不例外;不能直接喝奶也不會餓死,吃起司就好。在營養加分方面,能喝奶真的有什麼優勢嗎?

由人群中遺傳變異的比例變化,我們能評估天擇影響的結果,但是不見得能抓到當初天擇真正的目標。新研究的分析指出,LP 的意義似乎不在創造優勢,而是避免劣勢。

跑完一大堆統計分析後,有兩項因素和 LP 的關聯性最高。一項是人口數量的波動,另一項是人口的密度。論文的解釋是,人口數量波動和飢荒有關(飢荒讓人口減少),密度和傳染病有關(人變多會增加傳染病的機率)。

沒有 LP 的人直接喝奶,副作用往往是腹瀉,在豐衣足食的現代社會多半沒有大害,還能刺激代謝,順便減肥;雖然對某些人而言,拉肚子依然是困擾的問題。

至於營養不良的人,腹瀉更可能出問題;某些疾病下,拉肚子造成脫水,容易重傷害健康。時常被營養不良、傳染病、飢荒等災厄糾纏,是古代的常態。

由此推論,不論是饑荒的短期逆境,或是傳染病的長期逆境(論文沒有特別討論,我想也包括寄生蟲?),配備 LP 的人由於能少拉肚子,生存機率也會大一點。

不同地區的人群,在不同年代的 LP 人口比例。圖/參考資料 1

魔鬼藏在拉肚子?

影響最大的年齡層可能介於 5 到 18 歲。此一小大人的階段,乳糖酶將漸漸失去作用;營養不良、體弱多病的人身體比較脆弱,拉肚子是要命的事,這或許正是天擇的目標!

古時候衛生狀況不佳,拉肚子大概很常見,而未成年人的死亡率也遠勝現在,小孩死掉並不意外。在此之下,能減少拉肚子的 LP 遺傳變異,長期累積下來,正面影響力或許頗為可觀。

這項研究的說法是否正確?它仍不足以算是決定性的證據,不過脈絡頗有道理。非洲也有多個獨立誕生的 LP 遺傳變異,相較於歐洲了解少很多,這是個潛在的研究方向。

另外不可忽視,讓乳糖酶維持作用的 LP 遺傳變異,也受到飲食習慣、生活背景影響,不單純是遺傳的事。例如自古牧業發達的蒙古、哈薩克,居民的 LP 比例一直很低,幾千年來也活得很好。少拉肚子也許能解釋歐洲的狀況,其餘地區不宜過度延伸。

延伸閱讀

參考資料

  1. Evershed, R. P., Davey Smith, G., Roffet-Salque, M., Timpson, A., Diekmann, Y., Lyon, M. S., … & Thomas, M. G. (2022). Dairying, diseases and the evolution of lactase persistence in Europe. Nature, 1-10.
  2. The mystery of early milk consumption in Europe
  3. Famine and disease drove the evolution of lactose tolerance in Europe
  4. How humans’ ability to digest milk evolved from famine and disease
  5. Ancient Europeans farmed dairy—but couldn’t digest milk

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
172 篇文章 ・ 619 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
怎麼證明澳洲人吃剩的蛋殼,來自 5 萬年史前巨鳥?
寒波_96
・2022/09/14 ・2882字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

古代人對生態環境的影響,不容易回答。人類抵達澳洲的年代早於 5 萬年,在此之後,澳洲有一批大型動物滅團,但是與人類的關係多少,專家們各有主張。有時候,甚至連人類是否接觸過某種動物都無法肯定。

一項 2022 年發表的研究,證實一款滅絕的史前大鳥確實與人類發生關係,而且材料相當特別:蛋殼中的古代蛋白質。[參考資料 1, 2, 3]

澳洲南部 5 萬年前的牛頓巨鳥與古巨蜥(Megalania)想像圖,兩者皆已滅絕。圖/Peter Trusler

澳洲 5 萬年前鳥蛋殼,是塚雉還是巨鳥?

用於分析的材料是澳洲南部出土的一批蛋殼,有被煮食的痕跡;它們距今大概 5 萬年左右,可以推測是古代人的食物。蛋殼來自哪種鳥呢?

活跳跳的鳥類可以根據外貌識別,去世後只剩骨頭的鳥類,也能靠著型態差異分辨。而鳥類產下的蛋,不同鳥蛋的外觀有別,厚度等特徵也有所不同,有時候光是憑藉蛋殼,便能判斷物種。

有專家主張這批古代人吃剩的蛋殼來自牛頓巨鳥(Genyornis newtoni),這是一款不會飛的大鳥,身高超過 2 公尺,體重 220 到 240 公斤,一顆蛋有 1.5 公斤重。

牛頓巨鳥在人類抵達澳洲後就消失了,但是沒什麼人類獵捕的骨頭證據。倘若蛋殼真的產自巨鳥,可以推論這款鳥類的消失與人有關。然而,也有專家認為這批蛋殼來自塚雉(megapode)。塚雉體型比牛頓巨鳥小很多,只有 5 到 7 公斤重。

澳洲南部尋獲史前鳥蛋殼的遺址位置。圖/參考資料 1

由史前蛋殼中的蛋白質,判斷未知鳥類的演化位置

5 萬年前成為人類大餐的鳥蛋,究竟何許鳥也?這項研究搜集多種鳥類的蛋殼型態作比較,也寄希望於遺傳學。蛋殼的成分主要由碳酸鈣等礦物質構成,不過其中也有少量 DNA、蛋白質;可惜出土蛋殼中無法取得足夠的古代 DNA。

生物去世後,遺傳物質開始崩解,蛋白質的結構比 DNA 更穩固,生還機率更高。好消息是,蛋殼中仍保有一些蛋白質片段,而且足以判斷親戚關係。

組成蛋白質的氨基酸序列取決於 DNA 編碼,只要知道基因的 DNA 序列,便能得知蛋白質的序列。定序 DNA 比蛋白質容易太多,絕大部分時候假如不知道 DNA 序列,便不會知道蛋白質。

但是聰明的讀者馬上會想到,我們知道牛頓巨鳥的基因組嗎?假如不知道,即使獲得蛋殼中的蛋白質片段,又該如何比對呢?

儘管缺乏牛頓巨鳥的基因組,好消息是,隨著基因體學發達,已經有大量鳥類物種的定序資訊,像是 Bird 10000 Genomes(B10K)計畫。所以可以根據各種鳥類的蛋白質序列差異,畫出演化樹,再將蛋殼中取得的蛋白質置於其中一起比較,便能判斷未知鳥類的分類位置。

加入蛋殼鳥後,各種鳥類以蛋白質差異建構的演化樹。鴕鳥(Struthio camelus)、鴯鶓(Dromaius novaehollandiae)屬於古顎類(Palaeognathae),和蛋殼鳥分屬不同群。蛋殼鳥(undetermined ootaxon)被歸類為雞雁小綱(Galloanseres)旗下,很早分家的分枝;塚雉(Alectura lathami)屬於雞形目(Galliformes),演化位置和蛋殼鳥差異不少。圖/參考資料 1

大鳥家族史:牛頓巨鳥、鴕鳥、恐鳥為各自獨立巨大化

依照可供分析的氨基酸變異,蛋殼鳥被歸類到雞雁小綱(Galloanseres)中很早分家的演化位置;而塚雉屬於雞形目(Galliformes,旗下有雞、火雞、珠雞、孔雀等一大堆鳥類),分家的時間要更晚得多。

藉由蛋殼殘存的遺傳訊息,無法判斷它是誰的最近親,不過肯定絕對不會是塚雉及其近親。因此論文判斷,蛋殼應該為牛頓巨鳥的蛋蛋。

倘若真的是牛頓巨鳥,或者說是 Genyornis 屬旗下的鳥類,這項分析也有助於釐清它的分類位置。說起不會飛的大鳥,大家都會想到鴕鳥、澳洲的鴯鶓(emu),還有紐西蘭已經滅團的恐鳥(moa);它們全部都屬於古顎類(Palaeognathae),和牛頓巨鳥所屬的雞雁小綱是平行關系。

澳洲的牛頓巨鳥及其近親們,目前被歸類為 Dromornithidae,屬於雞雁小綱旗下已經滅團的一支。所以大鳥與大鳥之間其實不是太近的親戚,是各自獨立巨大化的。

人類與 Genyornis 屬鳥類的體型比較。圖/prehistoric wildlife

竊蛋人對巨鳥滅團有責任

不少恐龍愛好者聽過,當年出土竊蛋龍與恐龍蛋化石時,還以為它們是盜獵其他恐龍的蛋,所以取名為竊蛋龍。後來才發現是誤會,它們懷抱的其實自己的蛋,可惜汙名已定,無法改名。人類盜獵大鳥的蛋無庸置疑,同理可稱之為「竊蛋人」。

鳥類靠生蛋繁衍後代,對其他動物而言卻是營養豐富的食物,人類只要有機會當然也不會放過。史前人類除了吃鳥蛋,也會將蛋殼加工製成工具與裝飾品;鴕鳥蛋殼的大量利用,甚至還能用來探討長達數萬年的非洲文化演化。

這回新研究以新奇的分析手法證實,5 萬年前的澳洲人會採集牛頓巨鳥的巨蛋來吃。由此推測,這款澳洲大鳥的滅絕,竊蛋人多半脫不了關係。

最後值得一提,由古早樣本取得非特定古代蛋白質(例如膠原蛋白、AMELY 以外的其他蛋白質)的分析辦法,繼古代 DNA 之後也成為古生物學、古人類學的新利器。澳洲的巨鳥蛋殼以外,雲南的步氏巨猿、西班牙的前人、青藏高原東側,甘肅的夏河丹尼索瓦人等材料,其中殘存的蛋白質片段都帶來寶貴的演化線索。

延伸閱讀

參考資料

  1. Demarchi, B., Stiller, J., Grealy, A., Mackie, M., Deng, Y., Gilbert, T., … & Miller, G. (2022). Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, e2109326119.
  2. The first Australians ate giant eggs of huge flightless birds, ancient proteins confirm
  3. Egg-eating humans helped drive Australia’s ‘thunder bird’ to extinction

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
172 篇文章 ・ 619 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。