Loading [MathJax]/extensions/tex2jax.js

1

1
1

文字

分享

1
1
1

星際瘋狂——太空會讓你失去理智嗎?@《打包去火星》

貓頭鷹出版社_96
・2012/08/11 ・3543字 ・閱讀時間約 7 分鐘 ・SR值 498 ・六年級

一份一九五七年四月在《航空醫學》期刊發表的研究指出,在受訪的一百三十七位飛行員裡,百分之三十五的人在高海拔飛行時都曾出現脫離地球的奇怪感覺,而且幾乎都是單獨飛行時發生的。一位飛行員這麼說:「我覺得我和地球這個球體的聯繫已經切斷了。」這種現象非常普遍,因此心理學家將之命名為「脫離效應」。對於這些飛行員來說,這種感覺大多不是恐慌,而是一種興奮。在一百三十七人中,只有十八人會用恐懼或焦慮來形容這種感覺。「感覺很平靜,好像你身在另外一個世界。」「我覺得自己是個巨人。」另外一個人說:「像是國王。」有三個人說他們覺得自己更接近神了。飛行員羅斯在一九五○年代駕駛實驗飛機,創下一系列的飛行高度紀錄,他兩度回報自己有一種奇異的「狂喜感受,想要一直繼續飛下去。」

在《航空醫學》那篇文章刊載的當年,基廷格上校搭乘一個掛在氦氣球下,電話亭般大小的密封座艙,垂直升高到約三萬公尺的高度。此時座艙內的氧氣含量低得危險,基廷格的長官賽門命令他開始下降。「來抓我啊。」基廷格用摩斯電碼一個字一個字這麼回答。基廷格說他是開玩笑的,但賽門不這麼想(摩斯電碼從來不是表現幽默的好媒介)。賽門在回憶錄《人類高飛》裡回憶,他當時覺得「古怪但又有點可理解的脫離現象可能占據了基廷格的心智……以至於他……陷入了這種詭異的幻想中,想拚命地不斷飛行,完全不顧後果。」

賽門將這種脫離現象和「深海暈眩」相比。「深海暈眩」是一種醫學症狀,潛水員潛到約三十公尺深的地方時,會有一種平靜、覺得自己無所不能的感覺占據他的思緒。比較沒有想像力的說法是「氦氣麻醉」,或者「馬丁尼效應」(像是到了二十公尺深度之後,每十公尺就喝一杯酒的效果)。賽門推測,航太醫師很快就會來到要討論「所謂『太空暈眩』」症狀的一天*。

*註:每一種旅行方式都有專屬的心理失常症狀。單獨在靜止、如玻璃的水面上狩獵的愛斯基摩獵人會受「空間扭曲」所苦,他們會出現船隻進水、前端沉沒,或是從水面上升起的幻覺。有興趣的話可參考〈格陵蘭西部愛斯基摩人『空間扭曲』初探〉,裡面討論了愛斯基摩人自殺的動機,並且指出在五十起自殺案件調查中,有四起是「認為他們的生命因年老而無用」的年長愛斯基摩人。裡面沒有提到他們是否像有時會聽見的案例那樣,自我放逐到浮冰之間,也不知道在浮冰間流浪是否會出現獨特的焦慮症狀。

他是對的,不過NASA喜歡使用這個比較樸實的說法:「太空喜樂。」太空人塞爾南在回憶錄裡提到:「有些NASA精神科醫生警告我,如果我往下看到地球快速往下方移動,我可能就會陷入太空喜樂的症狀。」當時塞爾南很快就要在雙子星九號計畫中進行史上第三次的太空漫步。心理學家都很緊張,因為前兩次的太空漫步者不只表現出奇異的狂喜感,還抗拒回到太空艙裡,這點相當令人憂慮。列昂諾夫是一九六五年第一位在太空的真空中自由漂浮的人類,他身上只有一條空氣管與日出號太空船相連。他曾寫下:「我的感覺好極了,心情非常愉快,一點也不想離開這個自由的空間。至於準備獨自面對深不可測的宇宙時應該會產生的難以克服的『心理障礙』,我根本一點都感覺不到,甚至忘記可能會有這種障礙。」

-----廣告,請繼續往下閱讀-----

在NASA第一次的太空漫步進行四分鐘後,雙子星四號太空人懷特脫口而出他覺得「超爽的」。他簡直找不到其他的話語來描述。「我……真是太棒了。」任務紀錄裡有些部分讀起來就像是一九七○年代的交心治療小組的對話紀錄。這裡有一段懷特與指揮官麥克迪維特在太空漫步後的對話,他們兩個都是空軍成員:
懷特:那是最自然的感覺,麥克。

麥克迪維特:……你看起來像剛剛待在媽媽的子宮裡一樣。

NASA擔心的不是他們的太空人陷入極端的喜樂,而是這種陶醉狀態可能會讓他們失去理智。在懷特二十分鐘的狂喜當中,任務控制中心不斷試圖介入其中,最後太空艙通訊員格里森和麥克迪維特通上話:

格里森:雙子星四號,回來!
麥克迪維特:他們要你現在就回來。
懷特:回去?
麥克迪維特:回來。
格里森:沒錯,我們已經試著聯絡你一陣子了。
懷特:啊,長官,再讓我拍幾張(照片)。
麥克迪維特:不行,快回來吧。
懷特:……聽著,你不用硬把我拖回去,我就快進去了。
但他沒有進太空艙。又過了兩分鐘,麥克迪維特開始求他了。
麥克迪維特:你就進來吧……
懷特:其實我只是要拍一張更好的照片。
麥克迪維特:不行,進來吧。
懷特:我現在要拍一張太空船的照片。
麥克迪維特:懷特,快進來!

-----廣告,請繼續往下閱讀-----

又過了一分鐘,懷特才開始朝太空艙門移動,一邊說著:「這真是我人生中最悲傷的一刻。」

與其擔心太空人不想回來,太空總署更該擔心他們有可能回不來,因為懷特後來花了二十五分鐘才成功從艙門安全回到太空船裡。對他的整體心智狀態更雪上加霜的是他知道萬一他的氧氣耗盡,或者他因為任何理由昏厥,麥克迪維特接到的命令是切斷他的聯繫繩,而不會冒著自己的性命危險去把他拖進艙門。

據說列昂諾夫曾在類似的掙扎中瘦了五公斤多。他的太空衣加壓的程度太大,以至於他的膝蓋無法彎曲,不能如訓練般地讓腳先進艙門,反而得讓頭先進;當他試著把身後的艙門關起來時,他的身體卡住了,所以必須要降低太空衣的壓力,才能移動身體進來,但減壓很有可能會致命,與潛水員太快往上游會造成的危險相似。

NASA歷史辦公室的紀錄中,有一條很符合冷戰時期氛圍的有趣小細節,當中宣稱列昂諾夫有一顆自殺藥丸,萬一他無法回到太空船,而他的隊友貝爾西耶夫必須「將他留在軌道上」時,就是藥丸的使用時機。一般觀念中的自殺藥丸都是氟化物,而這樣的致死方法比缺乏氧氣供應而死還要緩慢而且驚懼,所以應該不太需要這種藥丸。(隨著腦細胞缺氧而死,人會開始出現狂喜的感受,產生持續的強烈勃起。)

-----廣告,請繼續往下閱讀-----

太空心理學專家強.克拉克告訴我,自殺藥丸的故事不太可能是真的。我曾寄信到克拉克在美國國家太空生物醫學研究所的辦公室,詢問在太空裝裡彈出藥丸的詭異裝備*,他也四處問了別人,結果他的俄國消息來源對另外一項太空人配槍傳聞同樣嗤之以鼻:若列昂諾夫不能回來,貝爾西耶夫必須要槍殺他。事實上只是因為列昂諾夫和貝爾西耶夫未按照計畫降落在原定的地點,而是落在狼群盤踞的地區,所以至少在後來的一段時間裡,輕型手槍也被列為俄國太空人野外求生的裝備之一。

*注:彈出藥丸的裝置和頭盔內的點心棒一樣,必須固定在頭盔內的支架上。成分與水果捲相同的點心棒必須固定位置,好讓太空人只要一低頭就能咬到,或者像太空人哈德菲爾德說的,一低頭就會黏在他們的臉上。水果棒旁邊還裝著飲料管,通常都會有點漏,所以會把水果搞得「黏糊糊」的。哈德菲爾德說:「我們只好停止使用這些裝備。」

在懷特的太空漫步之後,太空喜樂的報告就少了很多。沒多久,心理學家就不再擔心這件事了,因為他們有新的問題要擔心。「艙外活動俯視暈眩」(艙外活動就是俗稱的太空漫步)是親眼看見地球在下方三十二萬公尺處,可能會帶來讓人腿軟癱瘓的恐懼感。和平號太空站太空人列寧格在回憶錄裡寫到這種「可怕又持久」的感覺;他覺得自己「往地球落下的速度……」比他過去在跳傘降落時的速度「快了十倍或一百倍」。的確也是如此(不一樣的地方當然在於太空人掉落的路徑是圍著地球繞圈子,而且不會撞到地面)。

列寧格如此描述他掛在長約十五公尺的望遠鏡機械手臂上痛苦的片刻:「我繃緊神經地抓著把手……強迫自己睜著眼睛,不要尖叫。」一名在漢勝航太設備公司工作的太空衣工程師說,曾有某位太空漫步者出了艙口後,就用穿著太空衣的兩隻手臂緊抓著同事的腿不放。

在美國國家太空生物醫學研究所研究太空暈眩與俯瞰暈眩的專家歐門指出,艙外活動俯視暈眩並不是種恐懼症,而是對一個新的、可怕的認知現實─以時速兩萬八千公里的速度在太空中墜落,所產生的正常反應。儘管如此,太空人還是不願意分享這種心情。歐門說:「回報是個大問題。」

-----廣告,請繼續往下閱讀-----

訓練太空人太空漫步的方式,是讓他們穿上艙外活動衣,在巨大的室內游泳池內漂浮演練,這個游泳池稱為「中性浮力室」。漂浮在水中和漂浮在太空中的狀況不盡相同,但就練習作業與熟悉太空船外環境來說,已經是很恰當的模擬了。(國際太空站的部分模擬設施就躺在休士頓太空總署的水池底部,像是沉船的遺跡一樣。)但是訓練並不能避免艙外活動俯視暈眩發生。虛擬現實的訓練也許能有某種程度的幫助,但你終究無法有效地「模擬」在太空中呈自由落體的感覺。要稍微體會那是什麼樣的感覺,你可以爬到一根電線桿上(要綁好安全繩),然後試著站在平坦的、大約一個派大小的電線桿頂,有點像參加自我成長活動的人,或是應徵電話公司工作的人有時候必須做的事。歐門說:「電話公司受訓期的前幾周裡,大約有三分之一的人會放棄。」

(全文未完)

摘自《打包去火星:太空生活背後的古怪科學》第三章 〈星際瘋狂——太空會讓你失去理智嗎?〉。本書由貓頭鷹出版社出版,獲2012年8月PanSci選書推薦

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

0

2
10

文字

分享

0
2
10
擁有「控制感」有助於維持心理健康?無助導致的憂鬱又是怎麼來的?——《選擇的弔詭》
一起來
・2023/12/31 ・3327字 ・閱讀時間約 6 分鐘

習得無助、控制感,以及憂鬱

提過塞利格曼等人發現的「習得無助」現象,他們進行了一系列動物基本學習歷程的實驗,訓練動物跳過柵欄以避開腳下的電擊。動物通常很快就能學會怎麼做,但有一組動物,因為先前經歷過一連串無法躲避的電擊,所以始終都學不會,牠們甚至放棄嘗試,只是待在原地乖乖接受電擊,而從不試著跳過柵欄。研究者的解釋是,當動物遭受自己無法控制的電擊,就會學到不管怎麼做都無濟於事,這樣的習得無助感會轉移到新情境,即使牠們能夠控制這個新情境,還是會放棄嘗試。

塞利格曼深入研究習得無助現象之後,驚訝地發現,這些無助的動物跟憂鬱症患者有許多共同點,尤其是兩者的消極心態,憂鬱症患者有時連「今天要穿什麼衣服」這樣的小事都力不從心。塞利格曼推論,至少有部分憂鬱症患者是因為經歷過一次強烈的失控感,於是開始相信自己對任何事都無能為力,並認為這種無助感會一直持續出現在各種情境。根據塞利格曼的假設,擁有控制感對於心理健康至關重要。

五十多年前,一項研究以三個月大的嬰兒為受試者,凸顯了控制感的重要性。研究者將嬰兒分成兩組,A 組是有控制權的嬰兒,他們躺在嬰兒床上,頭靠著枕頭,床的上方倒掛著一把半透明的傘,裡面用彈簧黏著幾隻動物玩偶,如果嬰兒轉一下頭,傘裡的燈就會亮起,嬰兒就可以看到那些玩偶在「跳舞」,但一會兒燈就熄滅了。當 A 組嬰兒碰巧轉頭,讓傘裡的燈亮起並看到玩偶,他們就會表現出好奇、開心和興奮的樣子,而且很快就學會利用轉頭來控制玩偶的出現,然後一次又一次重複這個動作,看起來一直都很開心。B 組嬰兒則沒有控制權,只有在 A 組轉頭時,他們床上的燈也跟著亮起,才可以「順便」看到玩偶, 所以 B 組看到玩偶的次數和時間都跟 A 組一樣多,但他們只有在一開始表現得跟 A 組一樣開心,然後很快就因為適應而失去興趣。

研究使用玩偶測試後發現嬰兒的快樂似乎源自於「控制感」。圖/envato

研究者從兩組嬰兒的反應差異,得到下列結論:讓嬰兒一直很開心的原因,並不是會跳舞的動物玩偶,而是控制感。A 組嬰兒之所以對著玩偶咯咯笑個不停,是因為他們似乎知道是自己讓這一切發生,「是我幹的好事,很棒吧,而且只要我想要,隨時都可以再來一次」。B 組嬰兒雖然什麼都不用做就可以看到玩偶,但是卻沒有體驗到這種令人興奮的控制感。

-----廣告,請繼續往下閱讀-----

小嬰兒幾乎無法控制任何事物,既不能任意靠近自己想要的東西,也無法離討厭的東西遠遠地。他們無法靈活控制自己的手,所以抓取或操作物品都很吃力。他們還會無預警地被被東戳戳、西捏捏,或是被抱起又放下。小嬰兒的世界就是只能被動讓事情發生在自己身上,任由別人擺佈。或許正是基於這個原因,當他們偶然發現自己可以控制那麼一點小事, 就異常在意和興奮。

另一項研究以生命的另一端——老年人為受試者,也戲劇化地證明了「控制感」對於幸福快樂的重要性。研究者告訴 A 組養老院的住民必須為自己負責、照顧好自己;B 組住民則被告知他們的一切生活起居都由工作人員打理。此外,A 組每天都要決定一些簡單的事,並照顧一盆植物;B 組則沒有任何決定權,他們的植物也由工作人員照顧。結果,A 組老人(對自己的生活有一定的控制權)比 B 組(沒有控制權)更有活力、更靈敏,主觀幸福感也更高。最引人注目的是,A 組的平均壽命比 B 組多好幾年。可見,從出生到死亡,人都需要擁有對生活的掌控權。 

從出生到死亡,人都需要擁有對生活的掌控權。 圖/envato

無助感、憂鬱和歸因風格

塞利格曼的「無助-憂鬱理論」仍然受到質疑,最大的問題是,並非每個失去掌控感的人都會陷入憂鬱。因此,塞利格曼和同事在 1978 年修正了這一理論,並指出在無助感和憂鬱之間,還存在另一個重要的心理歷程。根據修正後的新理論,人在失敗和失去掌控感之後,會問自己為什麼,像是「為什麼他要跟我分手?」「為什麼我被刷下來?」「為什麼我沒有談成那筆生意?」「為什麼我的成績這麼爛?」。換句話說,人會尋找失敗的原因。

塞利格曼等人認為,人對事情的解釋——即歸因風格(attributional style)大致有兩種,每種風格都傾向接受特定類型的原因,而這些原因不一定跟實際情形有關。根據歸因風格的特性,造成失敗的原因可以分成三個向度:全面或特定、長期或短暫、內在或外在。

-----廣告,請繼續往下閱讀-----

假設你去應徵一份行銷業務的職缺,卻沒被錄取,你在分析自己為什麼會失敗時,下面是一些可能的原因: 

全面:我的自傳和履歷都寫得不好,面試時又很緊張,看來不管找什麼工作都不會被錄取了。

特定:我對那家公司的產品類型不太了解,我得多做一些功課,面試時才能脫穎而出。

長期:我的個性不是很主動積極,也無法擔負責任,這份工作根本不適合我。

短暫:我最近感冒,好幾天沒睡好,面試時狀態不佳。

內在:原本應該可以順利得到這份工作,是我自己搞砸了。

-----廣告,請繼續往下閱讀-----

外在:他們應該早就內定好了,找人去面試只是做做樣子,大家都是去陪榜的。

如果你用特定、短暫、外在因素去解釋自己為何沒被錄取,那麼你對下次找工作的預期會是什麼?你也許會想:如果去應徵自己熟悉的領域,並且保持睡眠充足,自己也更主動機靈一點,而且面試沒有黑箱作業,一切就會很順利。換句話說,這次的失敗經驗不太會影響下次找工作的表現。

反之,假設你用全面、長期、內在角度看待自己的失敗,認為自己的履歷毫不起眼, 面試時老是緊張得說不出話,而且個性太被動,別人都比自己更適合這份工作,那麼你預期的未來就會黯淡無光,你不但沒得到這份工作,接下來要找任何工作都會很困難。

修正後的「無助-憂鬱理論」認為,如果用全面、長期、內在因素去解釋失敗,那麼由失敗或失去掌控所引發的無助感才會導致憂鬱,因為在這種情況下,人有充分理由預期自己將不斷遭遇失敗。既然註定會失敗,那麼每天起床、換好衣服,繼續應徵下一份工作又有什麼意義? 

如果用全面、長期、內在因素去解釋失敗,人有充分理由預期自己將不斷遭遇失敗,那麼由失敗或失去掌控所引發的無助感會導致憂鬱。圖/envato

對上述理論的檢驗已得到令人矚目的結果。人確實會表現出不同的歸因風格,「樂觀者」會將自己的成功解釋為全面、長期、內在因素所致,而認為失敗是由特定、短暫、外在因素造成。「悲觀者」則恰好相反。如果兩個人得到同樣的分數,樂觀者會說「我得了 A」 或「她給我成績打 C」,悲觀者卻說「她給我打 A」或「我得了 C」,因此悲觀者更可能陷入憂鬱。此外,從一個人的歸因風格也可以預測他未來遭受失敗時是否會憂鬱。如果認為失敗的原因是全面性的,就會預期自己在其他生活領域也會遭遇失敗,而如果歸因於特定因素則不會這麼想;如果認為失敗的原因是長期性的,就會預期失敗將一直發生,而如果歸因於短暫因素就不會這麼想;如果認為失敗是跟個人內在因素有關,自尊就會遭受嚴重打擊,而如果歸因於外在因素則不會如此。

-----廣告,請繼續往下閱讀-----

這並不表示,把功勞都歸於自己,把失敗都歸咎於外在環境,就是擁有成功、幸福人生的祕訣。最好的方法是面對現實、做出正確歸因,雖然這樣做可能會造成情緒負荷,但準確分析成敗原因,並找出問題所在,才可能在下一次獲得更好的結果。不過平心而論,在大多數情況下,過度自責確實會造成不良心理後果。正如接下來所要探討的,在擁有無限選擇的世界,人們更容易因為結果不如意而自責。

——本書摘自《選擇的弔詭》,2023 年 11 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。