1

8
0

文字

分享

1
8
0

躲在牆後還被爆頭?讓 AI 幫你揪出外掛狗!——《科技報導》

科學月刊_96
・2021/01/15 ・1125字 ・閱讀時間約 2 分鐘

隨著網路發展,多人線上(multiplayer online, MMO)遊戲早已成為許多人每日必備的休閒娛樂,然而,有心人士仍可透過設備的漏洞強行開掛,在遊戲裡佔盡優勢,最終剝奪玩家的遊戲體驗。因此,若遊戲公司再不處理這個問題,就可能流失大量玩家,更可能影響到整個電競產業。

多人線上遊戲是許多人每日的休閒娛樂。圖/pixabay

德州大學達拉斯分校(University of Texas at Dallas, UT Dallas)計算科學學系研究團隊,日前利用人工智慧(artificial intelligence, AI)開發一款偵測遊戲作弊的工具,能快速識別作弊玩家在遊戲流量(traffic)傳送過程中的特徵,進而對該玩家發出警告。研究發表於《IEEE 可靠和安全計算交易》(IEEE Transactions on Dependable and Secure Computing)期刊。

此次研究以《絕對武力 Online》(Counter Strike Online, CSO)這款射擊遊戲進行實驗,過程中,玩家需與他人合作,透過其所賺取的遊戲幣購買武器,藉以消滅恐怖份子並救出人質。首先,團隊建立研究專用的伺服器,並召募 20 名學生玩家以作弊軟體參與遊戲,這些軟體包括可自動瞄準敵人的 Aimbot、提升移動速度的 Speed Hack,以及能透視戰場環境的 Wallhack。當玩家進行遊戲時,往返伺服器的數據與流量根據內容而有所不同,因此,研究人員便可從數據的大小、數量、傳輸時間、方向以及其他突發狀況,分析出可辨識的作弊特徵。

得到可供參考的特徵後,研究人員調整統計模型以對更大的群體進行測試,並用這些資料訓練機器學習模型,進而標記出遊戲過程中的異常流量。此外,研究團隊以圖形處理器(GPU)為基礎開發新的學習方法,以減少中央處理器(CPU)的負荷並克服標記數據的限制,加快分析的速度。

在過去的研究裡,遊戲作弊的偵測並不容易,因為那些從玩家電腦傳到伺服器的流量,無論異常與否,都會經過加密(encrypt);換句話說,以前若要分析這些數據,就必須對遊戲記錄檔(game logs)進行解密。如今,透過這個新工具,遊戲公司便可實時分析往返伺服器的加密數據,並及時對作弊玩家發出警告。

從玩家電腦傳到伺服器的流量都會經過加密,使得遊戲作弊的偵測工作變得困難重重。圖/pixabay

除此之外,UT Dallas 的計算科學教授翰恩(Latifur Khan)也在該大學的報導中表示,未來將建立一個不需往返客戶端與伺服器的偵測方法,讓這個工具的機制可以更安全。

參考資料

  1. Kim Horner, Computer Scientists Launch Counteroffensive Against Video Game Cheaters, University of Texas at Dallas, 2020.
  2. Md Shihabul Islam et al., GCI: A GPU Based Transfer Learning Approach for Detecting Cheats of Computer Game, IEEE Transactions on Dependable and Secure Computing, 2020.

文章難易度
所有討論 1
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策