2

9
6

文字

分享

2
9
6

為什麼我們會把 <3 「腦補」成愛心?——感覺記憶的秘密

波留先生 M. Beaulieu_96
・2021/01/03 ・2820字 ・閱讀時間約 5 分鐘 ・SR值 545 ・八年級

學習有五到:眼到、口到、耳到、手到和心到(可能還需要鼻到),聽起來雖然有點老掉牙,但不得不說,還是有點科學上的道理。

前面幾項,主要都是透過感官接收外界刺激,進而處理成有用的資訊,然而,不知道你是否有想過,「心到」是怎麼回事?是要很專心還是很用心嗎?

「心到」究竟是什麼?難道是用念力嗎?(誤)圖/giphy

從認知角度來說,大腦為了完成學習的任務,不僅要維持專注度,也得在處理這些刺激的同時參考過去的記憶,好讓我們能做出適當的回應,只是,這類由內部形成的感覺記憶 (sensory memory) 機制為何,一直都不太清楚。

感覺記憶,幫你推開世界的門

我們的大腦裡,存放著各式各樣的感覺記憶,無論視覺、聽覺還是觸覺皆然。有了這項能力,我們就能輕鬆地辨別交通號誌、和朋友談論自己喜歡的搖滾樂、找到衣服上鈕扣的位置,更重要的是,當我們碰到危險的物體時,也能根據記憶裡的經驗,讓自己遠離危險。

大腦裡存放各種感覺記憶,幫助我們遠離危險。圖/Pixabay

簡單來說,感覺記憶的片段使我們能勾勒出這世界的樣貌,也是我們在學習其他事物時的重要依據。

感覺記憶的儲存時間很短,大約是 0.25~4 秒之間不等,且會根據感覺刺激的來源儲存在相應的腦區。

舉例來說,有關「聲音」的訊息,就會存在與初級「聽覺」皮質區,而非初級視覺皮質區,如此一來,大腦便可依據這些訊息的重要性,再決定這些訊息能否成為短期或長期記憶。

畢竟在這個花花世界(?)裡,每天都有太多的資訊要處理,小小一顆大腦能裝的東西卻又相當有限,如果不能從中篩選出有用的消息來源,我們的生活恐怕會一團亂。

接收到的訊息,如何變得有用?

光是分辨出所感覺到的東西是什麼,顯然還是有些不夠的,我們仍需透過更高層次的認知把這些刺激處理成有意義的資訊,才能在未來學習新事物時加以應用。

根據 Open PSYC 所整理的資料,感覺的神經路徑在處理訊息時,會有兩種截然不同的方向——由下而上(Bottom-up)以及由上而下(Top-down)。

接收訊息後,我們仍然需要透過高層次的處理,才能將刺激處理成有用的資訊。圖/giphy

由下而上的處理方式相當直觀,即在感覺刺激進入時馬上就處理,例如,當我們看到隨便一張圖片時,這個路徑就會立刻協助我們接收圖片裡的特徵,但不會賦予它任何意義。

反之,由上而下的處理路徑,則是一種由由認知所驅動的感覺,它能根據我們過去的經驗與當下的情境,協助我們判斷這些東西可能是什麼

  • 筆者按:聽起來很像是大腦分析情報的單位,在接下來的文章中,我們就暱稱它為「內部消息」吧 XD

舉例來說,「<3<3<3」這一串文字,通常不會被理解成「小於三」,而是被腦補成愛心的形狀,然而,同樣的文字出現在「2<3」時,我們就會有另外一層理解。

由上而下的處理路徑,能夠根據過去經驗與當下情境幫助我們判斷訊息,就像是「:)」對我們來說是個可愛的微笑。圖/Unsplash

同樣的道理,有些音樂對我們來說就是音樂而已,但如果你特別將它們設定成手機鈴聲,當音樂響起時,你可能會不自覺地感到緊張,甚至開始找手機。

面對感覺記憶,大腦的處理路徑是?

科學家指出,由下而上與由上而下的處理路徑,兩者的編碼機制非常不同,甚至可以說是完全相反!

過去數十年來,關於「大腦如何處理來自環境的輸入」這類「由下而上」的處理路徑,早有許研究成果,然而,對於「由上而下」這條仰賴經驗的道路,我們倒是沒有太多瞭解。

2020 年 11 月,身為馬克斯.普朗克大腦研究所研究小組的負責人,萊茲克斯(Johannes Letzkus)與一群科學家透過小鼠的實驗,解開了內部消息傳遞路徑的一部分秘密,並將結果發表在《科學》(Science)期刊。

我們究竟是如何感知並判讀這個世界?先從處理訊息的路徑開始研究吧!圖/Pixabay

在開始這項實驗之前,根據以往的研究成果,研究小組已經知道,傳遞內部消息的關鍵路徑很有可能是「新皮質最外層到高階視丘(thalamus)」。

為了確認這一條路徑到底是不是內部消息的主要傳遞路徑,研究第一作者帕迪(Belén Pardi)與團隊開始設計實驗,讓小鼠學習感受威脅,並且在學習的前、後測量牠們視丘的突觸反應。

結果發現,雖說這個路徑也會針對「與學習無關、短暫且微小的刺激」進行編碼,但經過學習後,卻會大幅增強這個路徑的活動,而且隨著時間的推移,訊號會變得更快、更持久。

馬克斯.普朗克大腦研究所指出,在新皮質 (neocortex) 的最上層中,會由視丘的突觸 (橘色) 傳遞跟記憶有關的資訊,而藍色的神經元就像是守門員一樣,會控制、微調這些訊息和突觸。圖/MPI f. Brain Research

此外,帕迪所在的團隊也與德國柏林工業大學(Technische Universität Berlin)史普雷克勒(Henning Sprekeler)的團隊合作建立計算模型,發現在由上而下的編碼機制中,可讓訊息於經過路徑的過程中被「微調」,換句話說,新皮質外層某些特殊神經元,在這個過程中扮演訊號守門員的角色。

總而言之,這條路徑可能與內部消息有關聯性,而且在傳遞的過程中,新皮質外層的某些特殊神經元就像是守門員一樣,會微調這些訊息。至於這條路徑是不是「主要的」傳遞路徑,還有待科學家進一步證實。

感覺資訊處理的一線曙光

為什麼科學家需要這麼努力解開感覺資訊的秘密呢?

對人類來說,「大腦如何處理過往感覺經驗的訊號」是相當重要的事情,在自閉症和精神分裂症等腦部疾病中,由於這類訊號被干擾,使得他們的日常生活功能受到很大的影響。

未來,期待科學家能在這個研究的基礎上,確認內部消息的主要來源,並設計出有效的治療方案。

參考資料

  1. M. Belén Pardi et al., A thalamocortical top-down circuit for associative memory, Science, Vol. 370, Issue 6518, pp. 844-848, 13 Nov 2020.
  2. From the inside out – how the brain forms sensory memories, Max Planck Gesellschaft, 13 Nov 2020.
  3. Kendra Cherry, Sensory Memory Types and Experiments, Verywell Mind, 1 Aug 2020.
  4. Michael Puskar, What Sensory Memory Is And Why It’s Important, BetterHelp, 15 July 2020.
  5. Scott Roberts, Ryan Curtis, and Dylan Selterman, Bottom-up vs Top-down Processing, Open PSYC, 06-G.
  6. Sensory memory, Wikipedia.

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
波留先生 M. Beaulieu_96
8 篇文章 ・ 9 位粉絲
曾當過兩三年的職能治療師,在體力正式走下波前轉戰出版業,現為出版社圖文編輯,並斜槓各式聲音工作。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
10 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook