Loading [MathJax]/extensions/tex2jax.js

1

2
2

文字

分享

1
2
2

在所有可能性中尋找不存在黑洞的宇宙——《時空行者 史蒂芬.霍金》

大塊文化_96
・2020/11/07 ・3096字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

為了解決資訊遺失的問題,霍金設想以一種特殊的方式,把一大群粒子集中射向同一個地方,這樣,當它們相遇時,它們將具有足夠的物質和能量去形成一個黑洞。然後,他研究在理論上,所有這些粒子發生交互作用後可能出現的情況。

2004 年,霍金決心要解決對於黑洞資訊悖論的賭注。圖/Wikimedia common

他在都柏林演講中說:「人們從無窮遠處(即,很遠的地方)發出粒子和輻射,再回去測量無窮遠處發生了什麼事。」「人們永遠不會在中間(發生複雜交互作用的地方)去探測場的強度。」

儘管概念很簡單,但分析過程卻很複雜。為了做到這一點,霍金使用了費曼的方法:歷史總和法。記住,造就某一個可測量到的結果,背後都有無限多種可能的歷史途徑,而費曼的方法是要求你把這所有可能的歷史途徑全部加總起來:對於你正在研究中的系統的所有粒子,每個粒子可能出現「歷史」軌跡。

福爾摩斯說:「在排除所有可能性後,剩下的無論多麼不合乎情理,那就是真相。」是歷史總合法的一種解釋。圖/pixabay

在追蹤碰撞過程中可能發生的演變時,霍金說,儘管絕大多數可能的歷史都會被包含進黑洞形成的過程,但有少數的歷史軌跡是不會有黑洞形成的。霍金說,這是他的主要頓悟。「我將證明資訊可以透過這種可能性而保留下來」,他說。

-----廣告,請繼續往下閱讀-----
霍金提出的概念很簡單,背後計算過程卻很複雜。圖/stephen hawking

在那些沒有形成黑洞的歷史軌跡中,顯然不會發生黑洞資訊遺失的現象,因此,他大部分的談話內容都集中在論證,當我們把所有的歷史以費曼總和法相加時,這一小部分的歷史子集合將使得資訊可以復原:資訊透過未形成黑洞的歷史軌跡,而偷偷潛逃回來。

當然,這個簡單的邏輯背後的數學計算可以困難到是一場噩夢,而且讓霍金得出這個結論的計算過程有點神秘。

就某方面而言,為了能夠進行數學運算,霍金必須做出的幾個可疑的近似值,可謂是「極大的簡化」。他在演講中介紹了這些內容,而且承諾稍後將會把所有的細節寫成論文發表。

在描述了他的想法之後,霍金承認他賭輸了。他宣布自己錯了,資訊不會遺失,而且公正性和量子理論都是有效的。他向普雷斯基爾獻出了他應得的賭注:一套「可以從中隨意回收資訊」的百科全書。

研討會結束後,與霍金站在同一立場、認為資訊會遺失的索恩,拒絕遵循霍金的想法與認輸。「從表面上看,這是一個可愛的論點。」索恩說:「但是我還未看到細節。」普雷斯基爾接受了霍金的認輸與百科全書,但他也沒有接受霍金的論點。「說實話,」他說:「我聽不懂他所說的內容。」他說:需要看到更多細節,我才能被說服。

他們的反應是物理學家的典型反應。無論是贊成或反對霍金的人,都在等待他的細節。以前的霍金應該可以提供這些細節,但「新的霍金」卻認為他沒有足夠的時間去堅持嚴謹性的問題,他並沒有實際上去計算這些細節。

-----廣告,請繼續往下閱讀-----

他提出了自己的想法,然後把它分配給一名研究生,在他的監督下去進行這份艱巨的計算。不幸的是,這位學生還沒完成這份工作。索恩說:「他不是一個強到可以嚇人的學生。」

在霍金報名參加都柏林的研討會時,當時所完成的計算已經夠多,讓他有信心認為這個想法會成功。然而,證明它真正可行的研究成果,卻從未完成,但對霍金而言,他對這個答案深信不疑,因此,他不願意再花費自己在這個地球上的有限時間去對此進行補救。所以,他在都柏林會議上那段籠統含糊的演講,以及發表在該研討會論文集裡的摘要短文,就是他對這個所表達過的全部想法與意見。

在研討會上,霍金發表他對於黑洞資訊的想法。圖/Pixabay

霍金的這場演講以及他認輸的宣言,立刻成為全球的頭版新聞,但這僅僅是一場媒體秀,算是小題大作。在他發表這段演講時,幾乎所有物理學家都已經開始相信,這些資訊並沒有遺失,但是包括霍金本人在內,沒有任何人可以證明這一點。而對於那些尚未得出結論的人來說,也沒有人因為霍金的一席話,就開始跟著他而改變想法。

看到「標籤的力量」實在令我驚訝。在霍金成名之前,陌生人有時會根據他的外表而把他看成是一個身心都有缺陷的人,而不自覺地把視線移開。但是,一旦他被宣稱為是「現代愛因斯坦」,媒體則開始大量報導他所說過的任何事情。

-----廣告,請繼續往下閱讀-----
都柏林的研討會因霍金的參加,吸引許多媒體前來。圖/giphy

如果沒有他這麼一位出名的人物來參加這次的都柏林會議,那麼這將會是一場絕佳的思想漩渦,讓物理學家圍繞著這個話題進行深度討論,但是卻不會在任何報紙上出現相關報導。然而,由於有了霍金,所以這次的談話就成了一場媒體圈的「大拜拜」。

對於霍金本人來說,他的這項轉變算是一個重大時刻,甚至是一個歡樂的時刻。

對於大多數人來說,自己證明自己犯了錯,大概不會成為是件值得開香檳慶祝的事,但是,就像澤爾多維奇終於弄懂了霍金輻射的感覺一樣,霍金最為關心在意的事情始終是真相,他為了解了自己原本不了解的某件事而感到高興,特別這又是一件對物理學而言非常重要的事。

今天,距離都柏林那場研討會已經十五年了,距離霍金發現霍金輻射更是超過四十年了,相信資訊會遺失的人愈來愈少了。誠如霍金所言:幾乎所有的物理學家都相信,「如果你跳入黑洞裡,你的質能 (mass energy) 將會回歸到我們的宇宙裡」,儘管會是以一種殘破的形式,但是仍會「包含著關於你先前狀態的資訊」。儘管我們認為資訊不會丟失,但是仍然沒有確切的解釋可以說明實際發生的情況。

2015 年,霍金在斯德哥爾摩海濱會議中心舉行的演講。圖/Wikimedia common

除了霍金提出的方案之外,還有非常多的各式各樣理論,數量之多,讓物理學家撰寫評論文章時,已經不會列出個別理論,只會列出不同的理論類別而已,而每個類別都還包含許多不同的變體。轉換過立場的霍金所堅持的立場,與大多數人所認同的觀點一致,但未必與他最初的原始想法相同—他仍持續在研究可以得出這一結論替代性理由。

-----廣告,請繼續往下閱讀-----

雖然是斷斷續續,但是直到他過世之前,他都沒有放棄對這個問題的研究。而這也成為他最後一篇物理學術論文的主題,該論文於二○一八年在霍金辭世之後發表。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
用「世界上最大的望遠鏡」觀測黑洞!臺灣也參與其中!
PanSci_96
・2024/07/15 ・3876字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

台北時間 1 月 18 號下午四點,中研院天文所公布了一張黑洞照!別小看這張照片,裡頭有玄機!不論是驗證愛因斯坦的廣義相對論,還是要研究 M87 黑洞有沒有什麼特性,都得從這張照片著手。

為什麼我們能拍到比之前更清楚的照片呢?這是因為,這次「事件視界望遠鏡」的團隊,加入了格陵蘭望遠鏡的觀測數據。它不僅是全球第一座位於北極圈內的重要天文觀測站,此外,這座觀測站,也和台灣脫不了關係喔!

就讓我們來看看,這張黑洞照到底是怎麼拍的?這幾張黑洞甜甜圈照,又藏有哪些重要資訊?

近年的黑洞觀測

大家應該都還記得 2019 年的黑洞熱潮,當年 4 月,人類第一張黑洞照——M87 的真面目,被公開了,我們終於取得了黑洞存在的最直接證據。3 年後的 2022 年 5 月,我們也終於看清楚那個在我們所在的星系中,在銀河系最深處的黑洞——人馬座 A*。這兩張像是甜甜圈的照片,掀起黑洞熱潮,也帶給我們不少感動,想必很多人都還記得。

-----廣告,請繼續往下閱讀-----
圖/ESO、EHT Collaboration

但是,這兩張模糊的甜甜圈,不管對於科學家還是我們,想必都還不滿足!我們想看到的,是能跟電影星際效應中一樣,帶給我們強烈震撼的完整黑洞樣貌。

很快就有好消息,在 M87 照片公開的三年後。2022 年 4 月,天文學家展示了另一組 M87 的照片,除了原本的黑洞以外,還能看到外圍三條噴流,與圍繞在黑洞旁邊的吸積流,更加完整的黑洞結構同時存在在一張照片上。

圖/Lu, RS., Asada, K., Krichbaum, T.P. et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 616, 686–690 (2023). https://doi.org/10.1038/s41586-023-05843-w

有趣的是,在 2022 發表的觀測結果中,黑洞似乎胖了一圈,直徑比 2019 年發表的結果大了 50%。這可不是說黑洞在幾年間就變胖了 1.5 倍,不用擔心,宇宙不會因此毀滅。這主要是選用觀察的電磁波波段不一樣,2019 年觀察的電磁波波長是 1.3 毫米,2022 年的波長則是 3.5 毫米。但其實,1.3 毫米比 3.5 毫米的電磁波穿透力更好。也就是 2019 年的影像更接近黑洞的實際長相。

對了,2022 年的黑洞照並不是事件視界望遠鏡發的。你知道「事件視界望遠鏡」並不是唯一在進行黑洞觀測的計劃嗎?

-----廣告,請繼續往下閱讀-----

為了觀測黑洞,全球的電波望遠鏡進行同步串聯,打算打造一個等效直徑幾乎等於地球直徑的超大望遠鏡。因為我們無法直接打造一面面積跟地球一樣大的望遠鏡,因此我們得將分布在各地的望遠鏡同步串聯,由數據分析來拼湊出整體樣貌。你可能不知道,全球的大型黑洞觀測國際合作計畫其實有兩個,一個就是大家比較常聽到的「事件視界望遠鏡 」,簡稱 EHT,主要以 1.3 毫米的波段進行觀測,也就是大家熟悉的甜甜圈照。而另一個大計畫是「全球毫米波特長基線陣列」,簡稱 GMVA,以 3.5 毫米為主要觀測波段。2018 年 GMVA 還加入了新成員,讓我們能看到最新的這張照片。其中一個是超強力助手 ALMA,另一個,就是第一座位於北極圈內,由台灣中研院主導的格陵蘭望遠鏡 GLT。

為什麼黑洞會那麼難觀察?

現在大家都知道,我們已經能確實拍到黑洞了。即使黑洞的本體是全黑的,圍繞在黑洞周邊快速旋轉的物質,也會因為彼此摩擦與同步輻射,放出強烈的電磁波,被我們看到。

但即便它會發光,仍然是個難以觀測的天體,直到近年,我們才補捉到它樣貌。這是因為,比起亮度,更難的地方在於尺寸,黑洞好小,更準確來說,是看起來好小。M97 和人馬座 A* 實際上都比太陽大上不少,但因為距離我們十分遙遠,從地球上來看,人馬座 A* 與 M87 黑洞的陰影尺寸,分別是 50 微角秒和 64 微角。從我們的視角來看,就跟月球上的一顆甜甜圈一樣大。

但即便很困難,看到黑洞對我們來說十分重要,我們需要有確切的證據來證明我們對於黑洞的預測並沒有錯。例如在 2022 年有照片證明「銀河系中間真的有黑洞!」之前,2020 的諾貝爾物理獎頒獎時,仍以「大質量緻密天體」來稱呼銀河系中央的「那個東西」。現在,從黑洞噴流、吸積盤、自轉軸、到光子球層,我們還有好多黑洞特性,需要更高解析度的照片來幫我們驗證,驗證廣義相對論的預測是否正確,而我們對於黑洞與宇宙的認識是否需要調整。

-----廣告,請繼續往下閱讀-----

好的,我們知道為了追星,嗯,是追黑洞,科學家無不卯足全力提升望遠鏡的解析度。但是為何格陵蘭望遠鏡的加入,就能提升照片解析度呢?

組成世界上最大的望遠鏡?

越大的望遠鏡看得越清楚,為了將全世界的電波望遠鏡串聯,打造等效口徑幾乎等於地球的超大望遠鏡。這些望遠鏡使用了特長基線干涉測量法,這些望遠鏡則稱為電波干涉儀。

這些電波干涉儀通常由一系列的天線組成,例如位於智利的阿塔卡瑪大型毫米及次毫米波陣列 ALMA,就是由 66 座天線組成,最遠的兩座天線距離長達 16 公里。在觀測同一個訊號時,透過比較每座望遠鏡收到訊號的相位差,就能計算出訊號的方位角,進一步推算出原始訊號的樣貌。而當這些天線數量越多、距離越遠,就等於是一座更高解析度、口徑更大的望遠鏡。例如 ALMA 的影像解析度高達 4 毫角秒,能力比知名的哈伯太空望遠鏡還要好上 10 倍。另一座位於夏威夷的次毫米波陣列望遠鏡 SMA,則是由 8 座天線組成,雖然單座天線的直徑只有 6 公尺,卻足以以模擬出一座直徑 508 公尺的大型望遠鏡。

利用相同技術,只要透過原子鐘將全球的望遠鏡同步,就能模擬出直徑幾乎等於地球直徑的超巨大望遠鏡,也就是「事件視界望遠鏡 」或是「全球毫米波特長基線陣列」。

-----廣告,請繼續往下閱讀-----

沒錯,格陵蘭望遠鏡 GLT 也扮演重要角色。但為什麼要把望遠鏡建在北極圈內?

畢竟這可不簡單,為了讓望遠鏡能在最低零下 70 度 C 的嚴苛環境中工作,還期望它能發揮超越過去的實力,科學家改造了不少設備,甚至還要加裝除霜裝置。

但這一些都是值得的,因為光是 ALMA、SMA、GLT 三座望遠鏡,就可以在地球上構成一個大三角型,等於一台巨大的電波干涉儀。

圖/First M87 Event Horizon Telescope Results. II. Array and Instrumentation – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Map-of-the-EHT-Stations-active-in-2017-and-2018-are-shown-with-connecting-lines-and_fig1_333104103 [accessed 15 Jul, 2024]

而對於事件視界望遠鏡來說也十分重要,因為在地球的南邊已經有南極望遠鏡了,東西向則有許多來自中低緯度的望遠鏡。剩下的關鍵位置,當然就是北極的格陵蘭望遠鏡了。而特長基線干涉技術要在不同頻段發揮作用,每個望遠鏡的相對位置也十分重要。格陵蘭的地理位置與良好的大氣環境,讓格陵蘭望遠鏡可以觀測 230GHz 這個特殊波段的訊號,並且補足黑洞的諸多細節。根據官方消息,未來還要真的登高望遠,更上一層樓地把整座格陵蘭望遠鏡搬上格陵蘭島山頂的峰頂站台基地 (Summit Camp ),觀測 690GHz 的特殊訊號,期待能看到黑洞的光子球層,驗證廣義相對論的預測。

-----廣告,請繼續往下閱讀-----

順帶一提,這邊提到的 SMA、ALMA 和格陵蘭望遠鏡,不僅合作關係密切,這些重要計畫台灣還都參與其中!

SMA 是 2003 年啟用,全世界第一座可觀測次毫米波的望遠鏡陣列,也是史密松天體物理台與台灣中研院天文所合作興建與運作的望遠鏡,每年也有許多台灣參與或主導的研究發表。

2013 年啟用,位於智利的 ALMA,則是由東亞、歐洲、北美共同合作的國際計畫,台灣當然也參與其中。擁有66座望遠鏡的 ALMA,也是地面上最大的天文望遠鏡計畫。而有趣的是,由中研院主導的格陵蘭望遠鏡所使用的天線,就是使用 ALMA 的原型機改造而成的!

最後,這次最新的黑洞照就是這張,在 2018 年 4 月拍攝,歷經將近 6 年分析,才正式公布的照片。它與 2017 拍攝,2019 年公開的第一張黑洞照一樣,主角都是 M87。

-----廣告,請繼續往下閱讀-----

你說兩張照片看起來都一樣?嗯,沒錯,雖然還是看得出差異,但兩張照片大致上看起來的確差不多。

這兩張照片所得出的光環半徑相同,代表在相隔一年的拍攝期間,黑洞半徑並沒有產生變化。因為 M87 並不會快速增加質量,所以這個觀測結果非常符合廣義相對論對於光環直徑的預測。並且這張照片也讓我們更加確定,2017 年拍攝到的甜甜圈結構,並不是黑洞的偶然樣貌。

有相同的地方,也有不一樣的地方。這兩張照片光環上最亮的位置逆時針偏轉了 30 度,光是這點,就將開啟下一波的黑洞研究熱潮。透過比較不同時間拍攝的照片,科學家將可以深入研究黑洞的自轉軸角度,以及自轉軸隨著時間偏轉的「進動」現象,並更進一步分析黑洞周圍的磁場與電漿理論。

因為 GLT 的加入,有效提升了 EHT 的影像保真度,科學家能取得更加真實的黑洞照,為未來的黑洞研究打下基礎,例如挑戰很難被拍到的光子環。

-----廣告,請繼續往下閱讀-----

特別感謝中研院天文所研究員,同時也是格陵蘭望遠鏡計畫執行負責人的陳明堂老師協助製作。我們還有一場與陳明堂老師的直播對談,直接來和大家聊聊這次的黑洞結果以及回答各式各樣的黑洞問題。一起繼續來體驗黑洞的魅力吧!

也想問問大家,現在有了一批新資料,你最期待下一次的黑洞成果發表,帶來什麼消息呢?

  1. 我們成功觀察到了霍金輻射!
  2. 黑洞的模擬結果發現超越廣義相對論的新理論!
  3. 黑洞中其實有其他文明,而且我們已經成功接觸了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

4
1

文字

分享

0
4
1
快速通道與無盡地界:科幻作品裡的黑洞——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/08 ・4430字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

星際捷徑

一個無底深淵怎能成為星際飛行的捷徑呢?原來按照愛因斯坦的理論,黑洞是一個時空曲率趨於無限大——也就是說,時空本身已「閉合」起來的區域。但往後的計算顯示,若收縮的星體質量足夠大的話,時空在閉合到某一程度之後,會有重新開敞的可能,而被吸入的物體,將可以重現於宇宙之中。只是,這個「宇宙」已不再是我們原先出發的宇宙,而是另一個宇宙、另一個時空(姑毋論這是甚麼意思)。按照這一推論,黑洞的存在,可能形成一條時空的甬道(稱為「愛因斯坦-羅森橋接」),將兩個本來互不相干的宇宙連接起來。

這種匪夷所思的推論固然可以成為極佳的科幻素材,但對於克服在我們這個宇宙中的星際距離,則似乎幫助不大。然而,一些科學家指出,愛因斯坦所謂的另一個宇宙,很可能只是這一宇宙之內的別的區域。如果是的話,太空船便可由太空的某處飛進一個黑洞之內,然後在遠處的一個「白洞」(white hole)那兒走出來,其間無須經歷遙遠的星際距離。把黑洞和白洞連結起來的時空甬道,人們形象地稱之為「蛆洞」、「蛀洞」或「蟲洞」(wormhole)。

科幻作品裡常以穿越蟲洞作為星際旅行的快速通道。圖/envato

「蛆洞」是否標誌著未來星際旅行的「捷徑」呢?不少科幻創作正以此為題材。其中最著名的,是《星艦奇航記》第三輯《太空站深空 9 號》(Deep Space Nine, 1993-1999),在劇集裡,人類發現了一個遠古外星文明遺留下來的「蛆洞」,於是在旁邊建起了一個龐大的星際補給站,成為了星際航運的聚散地,而眾多精彩的故事便在這個太空站內展開。

我方才說「最著名」,其實只限於《星艦》迷而言。對於普羅大眾,對於「蛆洞」作為星際航行手段的認識,大多數來自二○一四年的電影《星際效應》(Interstellar,港譯:《星際啟示錄》),其間人類不但透過蛆洞去到宇宙深處尋找「地球 2.0」(因為地球環境已大幅崩壞),男主角更穿越時空回到過去,目睹多年前與年幼女兒生離死別的一幕。電影中既有大膽的科學想像,也有感人的父女之情,打動了不少觀眾。大家可能有所不知的是,導演基斯杜化.諾蘭(Christopher Nolan, 1970-)邀請了知名的黑洞物理學基普.索恩(Kip Thorne, 1940-)作顧問,所以其中所展示的壯觀黑洞景象,可不是憑空杜撰而是有科學根據的呢!

-----廣告,請繼續往下閱讀-----
星際效應裡的黑洞景象。圖/wikimedia

那麼蛆洞是否就是人類進行星際探險的寄託所在呢?

然而事情並非這麼簡單。我們不要忘記,黑洞的周圍是一個十分強大的引力場,而且越接近黑洞,引力的強度越大,以至任何物體在靠近它時,較為接近黑洞的一端所感受到的引力,與較為遠離黑洞的一端所感受到的,將有很大的差別。這種引力的差別形成了一股強大之極的「潮汐張力」(tidal strain),足以把最堅固的太空船(不要說在內的船員)也撕得粉碎。

潮汐張力的危險不獨限於黑洞,方才提及的中子星,其附近亦有很強的潮汐力。 拉瑞.尼文(Larry Niven, 1938-,港譯:拉利.尼雲)於一九六六年所寫的短篇〈中子星〉(Neutron Star),正以這一危險作為故事的題材。

尤有甚者,即使太空船能抵受極大的潮汐力,在黑洞的中央是一個時空曲率趨於無限,因此引力也趨於無限的時空「奇點」(singularity)。太空船未從白洞重現於正常的時空,必已在「奇點」之上撞得粉碎,星際旅程於是變了死亡旅程。

然而,往後的研究顯示,以上的描述只適用於一個靜止的、沒有旋轉的黑洞,亦即「史瓦西解」所描述的黑洞。可是在宇宙的眾多天體中,絕大部分都具有自轉。按此推論,一般黑洞也應具有旋轉運動才是。要照顧到黑洞自旋的「場方程解」,可比單是描述靜止黑洞的史瓦西解複雜得多。直至一九六三年,透過了紐西蘭數學家羅伊・卡爾(Roy Kerr, 1934-)的突破性工作,人類才首次得以窺探一個旋轉黑洞周圍的時空幾何特性。

-----廣告,請繼續往下閱讀-----
圖/envato

旋轉的黑洞

科學家對「卡爾解」(The Kerr solution)的研究越深入,發現令人驚異的時空特性也越多。其中一點最重要的是:黑洞中的奇點不是一個點,而是一個環狀的區域。即只要我們避免從赤道的平面進入黑洞,理論上我們可以毋須遇上無限大的時空曲率,便可穿越黑洞而從它的「另一端」走出來。

不用說,旋轉黑洞(也就是說,自然界中大部分的黑洞)立即成為科幻小說作家的最新寵兒。

一九七五年,喬.哈德曼(Joe Haldeman,1943-)在他的得獎作品《永無休止的戰爭》(The Forever War, 1974)之中,正利用了快速旋轉的黑洞(在書中稱為「塌陷體」——collapsar)作用星際飛行——以及星際戰爭得以體現的途徑。

由於黑洞在宇宙中的分佈未必最方便於人類的星際探險計劃,一位科學作家阿德里安.倍里(Adrian Berry,1937-2016)更突發奇想,在他那充滿想像的科普著作《鐵的太陽》(The Iron Sun, 1977)之中,提出了由人工製造黑洞以作為星際轉運站的大膽構思。

-----廣告,請繼續往下閱讀-----

要特別提出的一點是,飛越旋轉黑洞雖可避免在奇點上撞得粉碎,卻並不表示太空船及船上的人無須抵受極強大的潮汐力。如何能確保船及船員在黑洞之旅中安然無恙,是大部分作家都只有輕輕略過的一項難題。

此外,按照理論顯示,即使太空船能安然穿越黑洞,出來後所處的宇宙,將不是我們原先出發的那個宇宙;而就算是同一個宇宙,也很可能處於遙遠的過去或未來的某一刻。要使這種旅程成為可靠的星際飛行手段,科幻作家唯有假設人類未來對黑洞的認識甚至駕馭,必已達到一個我們今天無法想像的水平。

然而,除了作為星際飛行途徑,黑洞本身也是一個怪異得可以的地方,因此也是一個很好的科幻素材。黑洞周圍最奇妙的一個時空特徵,就是任何事物——包括光線——都會「一進不返」的一道分界線,科學家稱之為「事件穹界」(event horizon)。這個穹界(實則是一個立體的界面),正是由當年史瓦西計算出來的「史瓦西半徑」(Schwarzschild radius)所決定。例如太陽的穹界半徑是三公里,也就是說,假若一天太陽能收縮成一個半徑小於三公里的天體,它將成為一個黑洞而在宇宙中消失。「穹界」的意思就是時空到了這一界面便有如到了盡頭,凝頓不變了。

圖/envato

簡單地說,穹界半徑就是物體在落入黑洞時的速度已達於光速,而相對論性的「時間延長效應」(time dilation effect)則達到無限大。對太空船上的人來說,穿越界面的時間只是極短的頃刻,但對於一個遠離黑洞的觀測者,他所看到的卻是:太空船越接近界面,船上的時間變得越慢。

-----廣告,請繼續往下閱讀-----

而在太空船抵達界面時,時間已完全停頓下來。換句話說,相對於外界的人而言,太空船穿越界面將需要無限長的時間!

無限延長的痛苦

了解到這一點,我們便可領略波爾.安德遜(Poul Anderson, 1926-2001)的短篇〈凱利〉(Kyrie, 1968)背後的意念。故事描述一艘太空船不慎掉進一個黑洞,船上的人自是全部罹難。但對於另一艘船上擁有心靈感應能力的一個外星人來說,情況卻有所不同。理由是她有一個同樣擁有心靈感應能力的妹妹在船上,而遇難前兩人一直保持心靈溝通。由於黑洞的特性令遇難的一剎(太空船穿越穹界的一剎)等於外間的永恆,所以這個生還的外星人,畢生仍可在腦海中聽到她妹妹遇難時的慘叫聲。

安德遜這個故事寫於一九六八年,可說是以黑洞為創作題材的一個最早嘗試。

短篇〈凱利〉便是利用黑洞的特性——遇難的一剎等於外間的永恆——使生還者感受無盡的痛苦。圖/envato

太空船在穹界因時間停頓而變得靜止不動這一情況在阿爾迪斯一九七六年寫的《夜裡的黑暗靈魂》(The Dark Soul of the Night)中,亦有頗為形象的描寫。恆星的引力崩塌,在羅伯特.史弗堡(Robert Silverberg)的《前往黑暗之星》(To the Dark Star, 1968)之中卻帶來另一種(雖然是假想的)危險。故事中的主人翁透過遙感裝置「親身」體驗一顆恆星引力塌陷的過程,卻發覺時空的扭曲原來可以使人的精神陷於瘋狂甚至崩潰的境地。

-----廣告,請繼續往下閱讀-----

以穹界的時間延長效應為題材的長篇小說,首推弗雷德里克.波爾(Frederik Pohl, 1919-2013)的得獎作品《通道》(Gateway, 1977),故事描述人類在小行星帶發現了由一族科技極高超的外星人遺留下來的探星基地。基地內有很多完全自動導航的太空船,人類可以乘坐這些太空船穿越「時空甬道」抵達其他的基地,並在這些基地帶回很多珍貴的,因此也可以令發現者致富的超級科技發明。

故事的男主角正是追尋這些寶藏的冒險者之一。他和愛人和好友共乘一艘外星人的太空船出發尋寶,卻不慎誤闖一顆黑洞的範圍。後來他雖逃脫,愛人和好友卻掉進黑洞之中。但由於黑洞穹界的時間延長效應,對於男主角來說,他的愛人和好友永遠也在受著死亡那一刻的痛苦,而他也不歇地受著內疚與自責的煎熬。

故事的內容由男主角接受心理治療時逐步帶出。而特別之處,在於進行心理治療的醫生不是一個人,而是一副擁有接近人類智慧的電腦。全書雖是一幕幕的人機對話,描寫卻是細膩真摯、深刻感人,實在是一部令人難以忘懷的佳作。

圖/envato

由於這篇小說的成功,波氏繼後還寫了兩本續集:《藍色事件穹界以外》(Beyond the Blue Event Horizon, 1980)及《希徹會晤》(Heechee Rendezvous, 1984)。而且兩本都能保持很高的水準。

-----廣告,請繼續往下閱讀-----

時間延長效應並非一定帶來悲劇。在先前提及的《永無休止的戰爭》的結尾,女主角正是以近光速飛行(而不是飛近黑洞)的時間延長效應,等候她的愛侶遠征歸來,為全書帶來了令人驚喜而又感人的大團圓結局。

七○年代末的黑洞熱潮,令迪士尼(Walt Disney)的第一部科幻電影製作亦以此為題材。在一九七九年攝製的電影《黑洞》(The Black Hole)之中,太空船「帕魯明諾號」在一次意外中迷航,卻無意中發現了失蹤已久的「天鵝號」太空船。由於「天鵝號」環繞著一個黑洞運行,船上的人因時間延長效應而衰老得很慢。這艘船的船長是一個憤世疾俗的怪人,他的失蹤其實是故意遠離塵世。最後,他情願把船撞向黑洞也不願重返文明。

比起史提芬.史匹堡(Steven Spielberg, 1946-)的科幻電影,這部《黑洞》雖然投資浩大,拍來卻是平淡乏味,成績頗為令人失望。除了電影外,科幻作家艾倫.迪安.霍斯特(Alan Dean Foster, 1946-)亦根據劇本寫成的一本同名的小說。

這張圖片的 alt 屬性值為空,它的檔案名稱為 ___72dpi.jpeg

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。