0

0
0

文字

分享

0
0
0

小心蚊子!

陳俊堯
・2009/08/15 ・1271字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

圖片來源:bogdog Dan@flickr

人類的造訪可能直接或間接導致原生種野生動物的浩劫,這樣的故事在歷史發生過很多次了。大家最常聽到的故事應該會是老鼠跟著人到處跑,在上了某一個不幸的島嶼後,老鼠發現島上某種動物的蛋香甜營養又好偷,於是住下來把它們吃個精光。而這些動物從來沒看過老鼠,在還來不及發展出應變策略前就被滅種了。

現在,這樣的故事可能又要多加一些犧牲者了,地點是讓達爾文改變世界的加拉巴哥群島國家公園,而愛動物的無知觀光客將可能會變成幫兇。

這個未來的兇嫌是熱帶家蚊(Culex quinquefasciatus),在臺灣也是個大家想除之而後快的病媒蚊。這份由里茲大學(University of Leeds)、倫敦動物學會(Zoological Society of London)、瓜亞基爾大學(University of Guayaquil) 、加拉巴哥國家公園(Galapagos National Park)及達爾文基金會(Charles Darwin Foundation)合作的研究報告指出,熱帶家蚊會利用搭觀光客便機的方式偷渡到島上,在島上散播病原使得野生動物死亡。研究人員可以估算有多少蚊子利用飛機來到島上,再經由比對蚊子的基因組成的相似度,可以推測出搭便機來到島上的蚊子裡有多少可以順利在島上活下來。遺傳分析還讓研究人員發現這些外來的蚊子會和當地蚊子通婚留下後代,而且也看得出蚊子的族群在群島的各島嶼間有旅行交流的跡象。當然,它們最有可能的旅行途徑又是搭上了觀光客的交通船及郵輪。

雖然這宗兇案還沒有發生,但是證據顯示現在已經是萬事俱備,只差某個病原菌或病毒跳上某隻蚊子偷渡成功,大滅絕可能就要發生了。熱帶家蚊已經被證實可以傳播原生動物造成的禽類瘧疾(avian malaria),以及病毒造成的禽類痘症(avian pox)及西尼羅河熱(West Nile fever)等足以讓鳥類致死的疾病。在19世紀末熱帶家蚊跟著人類的活動入侵夏威夷帶入了病厡,造成當地特有種的旋蜜雀(honeycreeper)們大量死亡,原本的 42 種旋蜜雀,現在活下來的只剩 19 種了。

-----廣告,請繼續往下閱讀-----

建立國家公園原本是希望保住野生動物,然而現在又因為人的活動造成新的威脅,或許在國家公園的管理上,需要專家們多費心去設計一些防範措施,來阻斷這些可能造成危害的新途徑。
重要概念

  • [普生] 瘧疾(malaria)是Plasmodium屬的瘧原蟲造成的疾病,分類上是原生動物門, 是單細胞的真核生物,寄生在紅血球裡。長太多會破壞太多紅血球造成貧血,引發的免疫反應也會造成發燒。
  • [普生] 熱帶家蚊是昆蟲,屬於節肢動物門(Phylum Arthropoda)的昆蟲網(Insecta)。節肢動物的特徵是具有帶有關節的外骨骼附肢。
  • [普生] 子代大部份的基因和親代一樣,所以可以從基因像不像這一點來判斷誰是誰的後代,做親子鑑定就是靠這一點。如果現在我面對三千隻紋子,只要分析某些基因的相似程度, 就可以看出從某隻没買機票的蚊子生下來的後代有多少。
  • [生態] 很多入侵種生物都是藉由人類的活動被帶到自己没辦法獨力到達的地方。這種傳遞機制稱為 human-assisted dispersal。很多熟悉的生物是這樣來的,例如福壽螺,吳郭魚, 松材線蟲都是。

試試你的英文能力

研究原文

文章來源:30.6kj
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
3

文字

分享

2
2
3
伺機性病原菌在你我左右
彭冠傑_96
・2023/12/21 ・2061字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

真菌是自然環境中不可或缺的一環,然而,某些真菌對人體卻構成潛在風險。特別是伺機性病原菌,如足分枝菌屬群,對免疫弱勢者具有致命危險。雖然臨床對其有一定了解,但我們對這些真菌在環境中的分佈卻知之甚少。本篇聚焦於臺灣各類環境,旨在深入了解足分枝菌屬群真菌的分佈特性,以提供更全面的防控策略。

自然環境乃至周遭充斥著各種各樣對人類有害或有益的真菌。其中對人類生活有益處的有:釀酒酵母、黑殭菌、腐生及藥用真菌;對人類有害的除了黴菌、植物病原菌外,還有一群在人體免疫低下時感染人類的真菌—伺機性病原菌。伺機性病原菌可造成表皮、皮下、深部或系統性真菌病。常見的伺機性病原菌為麴菌屬(Aspergillus spp.)、白色念珠菌(Candida albicans)、新型隱球菌(Cryptococcus neoformans)等。此外,2010 年以前至今,歐美各國以及臺灣也開始出現由足分枝菌屬群 〔如:足分枝菌屬(Scedosporium)和節莢孢菌屬(Lomentospora)] 真菌所導致的感染 (1)。這兩屬真菌皆涵蓋對免疫功能低下和偶爾免疫功能完全的人類有感染性,導致呼吸道感染、皮膚感染、過敏反應、局部或全身性真菌病等疾病。

尖端足分枝菌(Scedosporium apiospermum)的微觀形態。圖/黃尹則博士。
多生節莢孢菌(Lomentospora prolificans)的微觀形態。圖/黃尹則博士。

足分枝菌屬群真菌為溫帶地區廣泛分佈的土壤微生物,但被認為在熱帶地區很罕見。它們偏好存在於高營養成分的介質,如:園藝土壤,受原油污染之土壤,家畜、鳥禽、牛隻的糞便等。此外,也可從低通風且高滲透壓的介質分離出來,像是下水道污泥、受污染的池塘底部、半鹹水、海埔地和廢水處理廠。足分枝菌屬群在環境的高盛行率,為重要的新興病原菌,尤其在醫院和室內,對患有慢性呼吸道疾病或免疫功能低下的人構成危害。

根據 264 起病例分析,感染此屬群真菌之免疫功能低下患者的死亡率為 22.2%,免疫功能完全患者則為 14%,全身性感染的死亡率甚至可達 80% (2)。而且,對很多現有的抗真菌藥物,像是弗路欣(5-flucytosine),兩性黴素 B(amphotericin B),三唑類(triazole)等低感受性導致其治療十分困難,需要更多的資源投入研究其診斷方式,有效的治療方式以及系統性的調查。然而,這些伺機性病原菌的研究絕大部分著重在臨床研究上,我們對這些病原菌的在環境中的分佈認識少之又少。臺灣的相關研究僅是零星臨床案例報告以及一個醫院系統的環境調查,缺乏系統性的環境樣本調查。

以黃尹則博士等人於 2023 年發表於醫學真菌學期刊的研究 (3),調查足分枝菌屬群物種於全臺灣環境中的土壤樣本之分佈現況。為了評估這些物種於各個環境設施所存在風險,比較自然環境以及都市環境樣本的物種分佈現況,並將醫院獨立出來一同分析。想知道(1)人類干擾度高的環境是否比自然環境有較多足分枝菌屬群的物種?(2)衛生敏感區域相較都市區域是否有較多的真菌物種?

-----廣告,請繼續往下閱讀-----

他們的研究結果顯示足分枝菌屬群的物種常見於臺灣的土壤樣本中(圖三),尤其在人類干擾環境如都市和醫院。此外,衛生敏感區域的真菌生物量沒有比都市區域多且與先前的研究一致。此外,研究發現自然環境有較低的真菌生物量。意味著都市生活的人們暴露在伺機性病原菌的環境當中,時時刻刻都有機會被感染。研究調查到的物種可分成三大類:臨床主要物種一共佔了 84.3%,尖端足分枝菌為最優勢,佔了 42.5%;鮑氏足分枝菌(S. boydii),橘色足分枝菌(S. aurantiacum)和多生節莢孢菌分別佔了 27.5%,8.7% 和 5.6%、臨床次要物種為荷赫氏足分枝菌(S. dehoogii),佔 15.0% 以及腐生物種為海口足分枝菌(S. haikouense),佔 0.6%。結果還發現尖端足分枝菌和多生節莢孢菌在公園鳥類餵食區域有較高的物種豐度,作者推測可能是因為鳥類糞便堆積使土壤含氮量提高所造成的現象。不論地理區域還是氣候區域,尖端足分枝菌都是優勢物種,顯示其有潛力成為人類活動的指標生物。

足分枝菌屬群普遍存在於台灣各地土壤中,在某些地點有比較高的生物量(fungal load),例如圖上有標示出的地點。圖/Medical Mycology。

然而,該篇研究缺少了養分濃度、酸鹼值、導電度、土壤質地、生物因子(共存微生物相)等資訊,暫時無法釐清真菌物種分佈的歧異度與環境生物因子的相關性。不過該篇研究提供這些足分枝菌屬群物種於東亞至關重要的基礎資訊,有待未來的研究進行土壤樣本的物理和化學性質分析以及分子族群遺傳研究以探討土壤菌株伺機性致病力的關鍵。

參考資料

  1. 王紹鴻,張蕎琳。2010。醫學真菌分子診斷之近況。生物醫學暨檢驗科學雜誌第 23 卷第 3 期:75–89。
  2. Seidel D, Meißner A, Lackner M, Piepenbrock E, Salmanton-García J, Stecher M, Mellinghoff S, Hamprecht A, Durán Graeff L, Köhler P, Cheng MP, Denis J, Chedotal I, Chander J, Pakstis DL, Los-Arcos I, Slavin M, Montagna MT, Caggiano G, Mares M, Trauth J, Aurbach U, Vehreschild MJGT, Vehreschild JJ, Duarte RF, Herbrecht R, Wisplinghoff H, Cornely OA. 2019. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope®. Critical Reviews in Microbiology 45:1–21.
  3. Huang YT, Hung TC, Fan YC, Chen CY, Sun PL. 2023. The high diversity of Scedosporium and Lomentospora species and their prevalence in human-disturbed areas in Taiwan. Medical Mycology 61(4): myad041. doi: 10.1093/mmy/myad041.
所有討論 2

0

0
0

文字

分享

0
0
0
小心蚊子!
陳俊堯
・2009/08/15 ・1271字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

圖片來源:bogdog Dan@flickr

人類的造訪可能直接或間接導致原生種野生動物的浩劫,這樣的故事在歷史發生過很多次了。大家最常聽到的故事應該會是老鼠跟著人到處跑,在上了某一個不幸的島嶼後,老鼠發現島上某種動物的蛋香甜營養又好偷,於是住下來把它們吃個精光。而這些動物從來沒看過老鼠,在還來不及發展出應變策略前就被滅種了。

現在,這樣的故事可能又要多加一些犧牲者了,地點是讓達爾文改變世界的加拉巴哥群島國家公園,而愛動物的無知觀光客將可能會變成幫兇。

這個未來的兇嫌是熱帶家蚊(Culex quinquefasciatus),在臺灣也是個大家想除之而後快的病媒蚊。這份由里茲大學(University of Leeds)、倫敦動物學會(Zoological Society of London)、瓜亞基爾大學(University of Guayaquil) 、加拉巴哥國家公園(Galapagos National Park)及達爾文基金會(Charles Darwin Foundation)合作的研究報告指出,熱帶家蚊會利用搭觀光客便機的方式偷渡到島上,在島上散播病原使得野生動物死亡。研究人員可以估算有多少蚊子利用飛機來到島上,再經由比對蚊子的基因組成的相似度,可以推測出搭便機來到島上的蚊子裡有多少可以順利在島上活下來。遺傳分析還讓研究人員發現這些外來的蚊子會和當地蚊子通婚留下後代,而且也看得出蚊子的族群在群島的各島嶼間有旅行交流的跡象。當然,它們最有可能的旅行途徑又是搭上了觀光客的交通船及郵輪。

-----廣告,請繼續往下閱讀-----

雖然這宗兇案還沒有發生,但是證據顯示現在已經是萬事俱備,只差某個病原菌或病毒跳上某隻蚊子偷渡成功,大滅絕可能就要發生了。熱帶家蚊已經被證實可以傳播原生動物造成的禽類瘧疾(avian malaria),以及病毒造成的禽類痘症(avian pox)及西尼羅河熱(West Nile fever)等足以讓鳥類致死的疾病。在19世紀末熱帶家蚊跟著人類的活動入侵夏威夷帶入了病厡,造成當地特有種的旋蜜雀(honeycreeper)們大量死亡,原本的 42 種旋蜜雀,現在活下來的只剩 19 種了。

建立國家公園原本是希望保住野生動物,然而現在又因為人的活動造成新的威脅,或許在國家公園的管理上,需要專家們多費心去設計一些防範措施,來阻斷這些可能造成危害的新途徑。
重要概念

  • [普生] 瘧疾(malaria)是Plasmodium屬的瘧原蟲造成的疾病,分類上是原生動物門, 是單細胞的真核生物,寄生在紅血球裡。長太多會破壞太多紅血球造成貧血,引發的免疫反應也會造成發燒。
  • [普生] 熱帶家蚊是昆蟲,屬於節肢動物門(Phylum Arthropoda)的昆蟲網(Insecta)。節肢動物的特徵是具有帶有關節的外骨骼附肢。
  • [普生] 子代大部份的基因和親代一樣,所以可以從基因像不像這一點來判斷誰是誰的後代,做親子鑑定就是靠這一點。如果現在我面對三千隻紋子,只要分析某些基因的相似程度, 就可以看出從某隻没買機票的蚊子生下來的後代有多少。
  • [生態] 很多入侵種生物都是藉由人類的活動被帶到自己没辦法獨力到達的地方。這種傳遞機制稱為 human-assisted dispersal。很多熟悉的生物是這樣來的,例如福壽螺,吳郭魚, 松材線蟲都是。

試試你的英文能力

研究原文

-----廣告,請繼續往下閱讀-----
文章來源:30.6kj
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

1

0
1

文字

分享

1
0
1
如何有效預防食媒性疾病 A 型肝炎病毒?
衛生福利部食品藥物管理署_96
・2023/10/10 ・2338字 ・閱讀時間約 4 分鐘

本文轉載自食藥好文網

圖/envato
  • 文/黃育琳 食品技師

民以食為天,你吃的食物是安全的嗎?

中國大陸上海市在 1988 年曾因毛蚶貝類污染而爆發 A 型肝炎疫情,造成約 30 萬人感染,其中 47 人死亡 [1]

我國於 2014 年 10 月至 11 月期間,急性病毒性 A 型肝炎本土病例達 30 人(其中 25 人住院),經衛生福利部疾病管制署(以下簡稱疾管署)與衛生局調查發現,多數病例於潛伏期間有生食蠔類(牡蠣)、文蛤或蛤蜊等貝類水產品 [2]

-----廣告,請繼續往下閱讀-----

這起事件極有可能是所謂的「食媒性疾病」。

何謂食媒性疾病?

食媒性疾病或稱食源性疾病(foodborne illness or foodborne disease)是指經由吃進被污染的食物或飲水等所致的疾病,常見症狀包含噁心、嘔吐、腹痛及腹瀉等。

依世界衛生組織的資料顯示,全球每年約有 6 億人因食用受到污染的食物或飲水而生病,其中 42 萬人死亡,又以兒童占多數。學童在校園中常暴露於共同的飲食及水源,人與人之間接觸密切,傳染病原很容易透過飛沫、糞口與接觸途徑傳播,易造成校園群聚感染事件發生 ​​[3]

但追溯污染源並不容易,食物在種植(或養殖)、採收、儲存、運送、製造、加工、包裝及烹調等任一階段都有可能被污染。且旅行和國際貿易頻繁更是提高被污染食品跨國散播的可能性 ​​[3],使農場到餐桌的食安管理顯得十分重要。

-----廣告,請繼續往下閱讀-----

A 肝病毒之分布

一開始提到因吃下受 A 型肝炎病毒(Hepatitis A virus,以下簡稱 A 肝病毒)污染的食物而感染 A 型肝炎,就是很典型病毒型食媒性疾病的例子。

A 肝病毒的流行主要與當地的衛生環境有關,主要流行地區包括亞洲、非洲與中南美洲等地區,尤以東南亞、印度、中國大陸等地區較為嚴重。

在開發中國家,人民多半在嬰幼兒時期,常因攝入受 A 肝病毒污染的水或食物而感染(通常 6 歲以下兒童感染約有 70% 無臨床症狀或症狀輕微),成年後多半已具有免疫力。

然而在已開發國家,衛生環境大致較佳,很多年輕人並未感染過 A 肝病毒而不具免疫力。臺灣便是如此,大部份的兒童及青少年(尤其是都會地區)都未具 A 型肝炎抗體,使爆發流行的風險增加 [1]

-----廣告,請繼續往下閱讀-----

A 肝病毒之特性與感染症狀

A 肝病毒是一種無套膜,直徑約為 27 nm 的 RNA 病毒,潛伏期約 15~50 天,其所引起的 A 型肝炎,屬第二類法定傳染病 ​​[1]

患者臨床症狀包含發燒、肌肉酸痛、疲倦、食慾不振、腹部不適、噁心、甚至嘔吐等,持續幾天後,病人會出現有茶色尿或併有眼白變黃(即黃疸)的徵兆,急性 A 型肝炎並無特殊療法,通常採一般的支持性療法即可痊癒 ​​[1]

而 A 肝病毒主要是透過糞口途徑傳播,最可能被污染的食品或飲料如水果、蔬菜、貝類、冰和水(包括冷凍或未經澈底加熱),感染者沒有確實洗手並接觸其他東西也會造成病毒傳播 [1]

不過 A 肝病毒的生命力頑強,對胃腸道極端的 pH 值和酶之耐受性高,能在不利條件下存活,被污染的食物需加熱超過攝氏 85 度且持續至少一分鐘才足以使 A 肝病毒失去活性。

-----廣告,請繼續往下閱讀-----

再加上只要有極少量病毒顆粒存在便足以使人致病,所以即使食品所含的病毒量很低,仍具有食品中毒之風險 [4]

透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心
透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心

食品從業人員基本要求《食品良好衛生規範》

為了避免食品受到病毒污染,食品從業人員的「衛生管理」就非常重要,我國行政院衛生福利部為了確保食品業者之衛生管理,已制定《食品良好衛生規範準則》(The Regulations on Good Hygiene Practice for Food, GHP)。

GHP 是食品業者確保其食品在製造、加工、調配、包裝、運送、儲存、販賣、輸入、輸出等過程中的安全衛生與品質,是最基本要求,所有食品業者皆應實施 GHP,在 GHP 附表二即說明:

食品從業人員經醫師診斷罹患或感染 A 型肝炎、手部皮膚病 、出疹、膿瘡、外傷、結核病、傷寒或其他可能造成食品污染之疾病,其罹患或感染期間,應主動告知現場負責人,不得從事與食品接觸之工作。

-----廣告,請繼續往下閱讀-----

雖然是安全衛生品質的基本要求,卻還是有不少業者會疏忽,導致感染事件重蹈覆徹。

最佳預防方式就是注重衛生管理

除了 A 肝病毒之外,諾羅病毒、E 型肝炎病毒及沙波病毒皆是常見的病毒型食媒性疾病,這些病毒感染均無特效藥物可治療,僅能採用良好的支持性療法幫助病人痊癒。

因此最佳的預防感染方式就是做好衛生管理,包含:

  1. 個人衛生:準備食品前及進食前,還有如廁後皆要確實洗手。
  2. 在飲食衛生:飲水要煮沸再飲用,所有食品都應清洗乾淨並澈底加熱,不生食。
  3. 環境衛生:維護廁所環境清潔,廚房及飲食用具要保持清潔。
圖/envato

參考資料

  1. 衛生福利部疾病管制署,2018。急性病毒性 A 型肝炎  疾病介紹。
  2. 衛生福利部食品藥物管理署,2023。A 型肝炎病毒(Hepatitis A virus)。
  3. 衛生福利部疾病管制署、國立臺北教育大學,2016。食媒性疾病防治 教師指引手冊。臺北市:衛生福利部疾病管制署。
  4. Bozkurt, H., Phan-Thien, K. Y., van Ogtrop, F., Bell, T. and McConchie, R. 2021. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition 61:1 116-138.
所有討論 1
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx