0

3
2

文字

分享

0
3
2

引爆下一代記憶體革命的奇異量子特性「電子自旋」—錢嘉陵院士專訪

研之有物│中央研究院_96
・2020/06/18 ・3959字 ・閱讀時間約 8 分鐘 ・SR值 553 ・八年級

  • 採訪編輯|郭雅欣;美術編輯|林洵安

電子自旋有多神奇?

電子,是世界上最神祕的粒子之一。它不只帶有負電荷,還會「自旋」。這個奇異的特性,是整個物質世界的根基,也是當代磁學的關鍵字,促成磁性記憶體等重大科技突破。研之有物專訪中研院院士、約翰霍普金斯大學物理系錢嘉陵講座教授,娓娓道來電子自旋如何開啟「現代磁學的黃金時代」。

中研院錢嘉陵院士,任教於美國約翰霍普金斯大學,並為 Jacob L. Hain 講座教授,專注於磁性、超導體、自旋電子學和納米結構材料的研究。錢教授不但是美國物理學會和美國科學促進學會的會士,榮獲美國物理學會的大衛阿德勒獎 (David Adler Award),更得到國際物理與應用物理聯盟(IUPAP)磁學獎與奈爾獎章(Néel Medal)。
攝影│林洵安

電子自旋 = 旋轉的電子?

首先,「自旋 1/2 」的電子是怎麼回事?難道電子會轉,而且永遠只轉半圈?

電子自旋,指的是電子帶有的一種量子性質,簡單說,科學家觀察到了電子具有自旋角動量,而帶電的粒子只要旋轉,就會產生磁場。換句話說,每個電子不只是帶著負電荷的一個小粒子,還是一個「超級迷你磁鐵」(磁矩)。

不過,在一般巨觀的世界裡,物體具有角動量代表正在旋轉,但在量子世界裡,電子雖有角動量,卻不能理解成電子真的在轉。錢嘉陵解釋:「電子是個體積無限小的粒子,沒有體積,所以不可能轉動,自旋完全是量子力學的概念。」沒有體積,卻有角動量,量子世界就是這麼不可思議!

量子世界的另一個不思議,在於所有東西都「量子化」,電子自旋也一樣──電子自旋角動量值在磁場中只能是 1/2 或 -1/2 ,沒有其他可能的值,這就是「電子自旋 1/2 」的由來。許多其他的粒子也有自旋角動量值,但統統只能是 1/2 的倍數,而且相鄰一定差 1 ,例如自旋 1 [1, 0, -1] 或是自旋 3/2 [3/2, 1/2, -1/2, -3/2] 。

-----廣告,請繼續往下閱讀-----
電子雖有角動量,卻不能理解成電子真的在轉。因為電子是個體積無限小的粒子,沒有體積,所以不可能轉動,自旋完全是量子力學的概念。而且電子自旋角動量值在磁場中只能是 1/2 或 -1/2 ,沒有其他可能的值,這就是「電子自旋 1/2 」的由來。
圖說設計│黃曉君、林洵安

如此違反直覺的電子自旋,究竟是怎麼被發現的呢?

純屬意外!發現電子自旋 1/2

電子自旋的發現,來自一場「想不到可以成功」的實驗。 1913 年,波耳( Niels Bohr )提出角動量量子化的概念,也就是在量子世界,角動量必定是「普朗克常數除以 2π 」(符號為 ℏ )的整數倍,例如某種粒子具有的角動量是 ℏ 的 1 倍,代表在觀察這種粒子時,角動量只可以是 ℏ 的 -1 、 0 、 +1 倍,不能是 ℏ 的 0.1 倍、 0.2 倍等等介於中間的值。

這個概念對當時的人來說太前衛,違反直覺,反對者包括接下來上場的兩位主角──斯特恩( Otto Stern )與格拉赫( Walther Gerlach )。

斯特恩與格拉赫於 1922 年設計了一個實驗,本意為「反駁」波耳的說法。他們將「銀」蒸發,產生銀原子束,穿過一個不均勻的磁場,投射到屏幕上。在通過不均勻磁場時,帶有角動量的銀原子會受到偏折。如果角動量不是量子化的 (具有各種方向的角動量),偏折的角度將有無限可能,屏幕上應是一片連續分布的銀原子。但實驗結果出人意表:銀原子偏折的角度只有兩個。換言之,角動量真的是量子化的!如以下影片所示:

-----廣告,請繼續往下閱讀-----

在做實驗之前,斯特恩信心滿滿的說:「波耳這個沒道理的模型如果是對的,我退出物理圈!」格拉赫也說:「沒有實驗這麼蠢的!」(不過他們還是做了。)但最後他們不但被狠狠打臉,還寄了明信片給波耳告解:「波耳,你終究是對的。」

不過,這兩人的臉可沒被白打,這個實驗正式拉開現代電磁學的序幕!「當時他們看到的現象,其實就是電子的自旋 1/2 !因電子的自旋角動量只有兩種可能: -1/2 及 +1/2 ,所以只會產生兩條偏折路線。」錢嘉陵笑著說:「能夠看見這個現象,真的很走運!」

這兩位科學家有多走運?兩人使用的粒子束雖然不是電子,卻正好是銀原子,這是少數體積夠大足以觀測、整體效應卻又等同一個電子的粒子。「如果他們換一種原子來做,就不會看到自旋了!」錢嘉陵提出另一幸運條件:「這個實驗的銀原子這麼少,怎麼看得見?原來當時的科學家會在實驗室抽雪茄菸,是煙,讓銀原子現形。」

儘管自旋在 1922 年就發現了,但礙於自旋是奈米尺度的現象,需要高科技的觀測技術才能觀察,因此又過了六十幾年,相關成果才開始嶄露頭角,包括發現層間耦合( interlayer coupling )以及巨磁阻效應( giant magnetoresistance )等等。

-----廣告,請繼續往下閱讀-----

「自 1986 年起,幾乎每一兩年,大家就找到一個關於自旋的新題目,現代磁學的黃金時代就此揭開序幕。」錢嘉陵回想。

若用一個詞來敘述「現代磁學」,那個詞就是「自旋」。

自旋電子引爆磁性記憶體革命

自旋電子學出現的年代,正是電腦蓬勃發展的年代。電腦裡負責長期儲存的硬碟,內部是塗滿了磁性物質的碟片,也就是每個記憶單元都像是一個小磁鐵一樣,以磁矩的方向來記錄 0 或 1 。因為磁矩的方向不會輕易消失,即使電腦關機、不通電了,也能儲存資料。

然而科技的快速發展,磁紀錄的密度愈來愈高。自 1957 年第一個硬碟發明以來, 50 年內硬碟的儲存密度增加了 10 億倍。這意味著同樣的體積裡多了 10 億倍以上的小磁鐵,或者說,每個小磁鐵的體積縮小了 10 億倍。在磁鐵密度不斷增高、體積不斷縮小的情況下,不論是製作硬碟或是讀寫資料,皆越來越困難。

硬碟包含磁碟片和磁頭,磁碟片負責紀錄資訊、磁頭負責讀寫資訊。每個磁碟片的存儲面都對應一個磁頭,磁碟片以每分鐘數千轉到上萬轉高速旋轉,這樣磁頭就能對磁碟片的指定位置進行讀寫。
圖片來源│Unsplash
圖說設計│黃曉君、林洵安
傳統的磁頭是讀寫合一的電磁感應式磁頭,不論讀寫都以電磁感應的方式進行。後來的硬碟設計將讀取和寫入分開,採用磁阻式磁頭—-通過電阻變化而不是電流變化來感應磁場信號,對於信號的變化更敏感、也更準確,而且讀取信號與磁軌寬度無關,磁軌可以做得很窄,大大增加磁碟的儲存密度。
資料來源│錢嘉陵
圖說重製│林洵安

幸好,我們有了自旋電子學! 1986 年,科學家發現當兩層鐵磁性薄膜中間夾著特定金屬時,隨著特定金屬厚度改變,鐵磁薄膜的磁場方向會跟著改變,以反向、同向、反向、同向……交互循環,稱為「層間耦合」。錢嘉陵解釋:「這個現象很奇特,裡面學問很多,所以一時之間大家都在研究層間耦合,包括我。」

-----廣告,請繼續往下閱讀-----

1988 年,法國科學家費爾特( Albert Fert )發現,若對薄膜磁場反向的層間耦合元件加上一個大磁場,將其中一片薄膜的磁場硬是翻轉過來,就可以讓這個元件的電阻降得很低,而且幅度高達 50% ,這就是「巨磁阻效應」。

為什麼會有巨磁阻效應?因為電子自旋有上、下兩個方向。如果今天電子通過的導體裡有上、下兩種方向的磁場,兩種自旋的電子都會受到干擾,這時電阻就會很大。但如果導體裡只有一種方向的磁場,其中一種自旋方向的電子就可順利通過,不受干擾,電阻就會變小。

巨磁阻效應解釋圖。如果今天電子通過的導體裡有上、下兩種方向的磁場,自旋方向為上下的電子都會受到干擾,這時電阻就會很大。如果導體裡只有一種方向的磁場,那麼其中一種自旋方向的電子就可以順利通過,電阻就會變得很小。
資料來源│錢嘉陵
圖說重製│林洵安

巨磁阻效應潛力無窮

巨磁阻效應為硬碟磁紀錄的設計帶來了全新可能。其中一個重要的例子,便是德國物理學家格林貝格(Peter Grünberg)利用巨磁阻效應研發了「自旋閥結構(spin valve structure)」,改變了硬碟讀取頭的運作模式。最早的硬碟讀取頭,是將纏繞有感應線圈磁性物質對準記錄的磁區,再根據感應線圈的磁通量變化所產生的感應電流,來得知該磁區記錄的是 0 或 1 。然而,磁區對感應線圈造成的磁場如果不夠大,感應電流不夠明顯,讀取就可能產生誤差。

自旋閥結構的好處就是只需要小小的磁場,就能產生明顯的電阻變化,不但使得讀取能精準正確,還能減少耗費的能量。

-----廣告,請繼續往下閱讀-----
自旋閥主要結構包含:一個磁場方向已固定的磁層 A (pinned layer),一個避免層間耦合的中間層 B(spacer layer),一個磁場可隨外界磁場改變方向的磁層 C(free layer)。 當磁層 C 對準紀錄磁區時,磁層 C 的磁場方向便會隨著磁區而改變。如果磁層 C 產生的磁場方向與磁層 A 相同,整個結構的電阻就會很小;相反的,如果磁場方向與磁層 A 相反, 電阻就會很大。所以只要透過測量電阻,就能瞬間確認磁區的資訊。
圖說設計│黃曉君、林洵安

除此之外,科學家也利用巨磁阻效應,開發了「磁阻式隨機存取記憶體」(MRAM),和以往的各種記憶體相比,MRAM 可望擁有非易失性 (關機斷電也不會流失資訊)、讀寫耗費的能量都少(省電)、處理速度快,磁紀錄密度又高的特性。

下一步呢?包括如何用電流更快翻轉磁矩以完成讀寫,甚至以電子自旋流取代電流等等研究,對於未來的電腦科技,可望帶來世紀性的突破。更多精彩研究,快點開中研院知識饗宴「自旋電子學:現代磁學的黃金時代」,讓錢嘉陵院士帶你走進當代磁學最前沿:

延伸閱讀

  • 錢嘉陵院士網頁
  • 〈 2007 諾貝爾物理獎專題報導–巨磁阻效應之物理原理與應用〉,《成大研發快訊》第一卷第九期。
  • 〈巨磁電阻的原理與應用〉,《科學發展》第426期。

本文轉載自中央研究院研之有物,原文為《電子自旋引爆下一代記憶體革命—錢嘉陵院士專訪》,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3421 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
量子糾纏態的物理
賴昭正_96
・2024/04/24 ・5889字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我不會稱量子糾纏為量子力學的「一般 (a)」特徵,而是量子力學「獨具 (the)」的特徵,它強制了完全背離經典的思想路線。

——薛定鍔(Edwin Schrödinger)1933 年諾貝爾物理獎得主

相對論雖然改寫了三百多年來物理學家對時間及空間的看法,但並未改變人類幾千年來對「客觀宇宙」——「實在」(reality)——的認知與經驗:不管我們是否去看它,或者人類是否存在,月亮永遠不停地依一定的軌道圍繞地球運轉。可是量子力學呢?它完全推翻了「客觀宇宙」存在的觀念。在它的世界裡,因果律成了或然率,物體不再同時具有一定的位置與運動速度……。

這樣違反「常識」的宇宙觀,不要說一般人難以接受,就是量子力學革命先鋒的傅朗克(Max Planck)及愛因斯坦(Albert Einstein)也難以苟同!但在經過一番企圖挽回古典力學的努力失敗後,傅朗克終於牽就了新革命的產物;但愛因斯坦則一直堅持不相信上帝在跟我們玩骰子!因此 1935 年提出了現在稱為「EPR 悖論(EPR Paradox)」的論文,為他反對聲浪中的最後一篇影響深遠的傑作。

1964 年,出生於北愛爾蘭、研究基本粒子及加速器設計的貝爾(John Bell),利用「業餘」時間來探討量子力學的基礎問題,提出題為「關於愛因斯坦(Einstein)-波多爾斯基(Podolsky)-羅森(Roson)悖論」的論文。貝爾深入地研究量子理論,確立了該理論可以告訴我們有關物理世界基本性質的地方,使直接透過實驗來探索看似哲學的問題(如現實的本質)成為可能。

2022 年的諾貝爾物理獎頒發給三位「用光子糾纏實驗,……開創量子資訊科學」的業思特(Alain Aspect)、克勞瑟(John Clauser)、蔡林格(Anton Zeilinger)的物理學家。讀者在許多報章雜誌(如 12 月號《科學月刊》)均可看到有關貝爾及他們之工作的報導,但比較深入討論貝爾實驗的文章則幾乎沒有。事實上貝爾的數學確實是很難懂的,但只要對基本物理有點興趣,我們還是可以了解他所建議之實驗及其內涵的。因此如果讀者不怕一點數學與邏輯,請繼續讀下去吧:我們將用古典力學及量子力學推導出在實驗上容易證明/反駁的兩個不同結果。

-----廣告,請繼續往下閱讀-----

角動量與自旋角動量

在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。

量子力學裡的角動量有兩個與我們熟悉之角動量非常不同的性質:

  1. 前者不能連續變化,而是像能量一樣被量化(quantized)了,例如電子的自旋量子數為 ½,所以我們在任何方向上所能量到的自旋角動量只能是 +½(順時針方向旋轉)或 -½(逆時針方向旋轉)
  2. 後者的角動量可以同時在不同的方向上有確定的分量,但基本粒的(自旋)角動量卻不能。

EPR 論文

EPR 論文討論的是位置與動量的客觀實在性;貝爾將其論點擴展到自旋粒子的角動量上,討論兩個粒子相撞後分別往左、右兩個不同方向飛離後的實驗。因曾相撞作用之故,它們具有「關連」(correlated)的自旋角動量;但常識與經驗告訴我們,如果分開得夠遠的話,它們之間應不再互相作用影響,因此我們在任一體系所做的測量也應只會影響到該體系而已。這「可分離性」(separability)及「局部性」(locality)的兩個假設可以説是物理學成功的基石,因此沒有人會懷疑其正確性的。

讓我們在這裡假設粒子相撞後的總自旋角動量爲零。如果我們測得左邊粒子的 B- 方向自旋為順時(見圖一),則可以透過「關連」而預測右邊粒子的 B- 方向自旋應為逆時。因右邊粒子一直是孤立的,基於物理體系的「可分離性」與「局部性」,如果我們可以預測到其自旋的話,則其自旋應該早就存在,爲一「實在」的自然界物理量。

-----廣告,請繼續往下閱讀-----
EPR 與貝爾實驗裝置。 圖/作者提供   

同樣地,如果我們突然改變主意去量得左邊粒子的 C- 方向自旋為順時,則也可以透過「關連」而預測到右邊粒子的 B- 方向自旋應為逆時。但右邊粒子一直是孤立的,因此其 C- 方向自旋也應該早就存在,亦爲一「實在」的自然界物理量。所以右邊的粒子毫無疑問地應同時具有一定的 B- 方向自旋與 C- 方向自旋。同樣的論點也告訴我們:左邊的粒子毫無疑問地也應同時具有一定的 B- 方向自旋與 C- 方向自旋。如果量子力學説粒子不能同時具有一定的 B- 方向與 C- 方向自旋,而只能告訴我們或然率,那量子力學顯然不是一個完整的理論!

貝爾的實驗

貝爾將這一個物理哲學上的爭論變成可以證明或反駁的實驗!如圖一,我們可以設計偵測器來測量相隔 120 度的 A、B、C 三個方向的自旋(順時或逆時)。依照古典力學(EPR),自旋在這三個方向上都有客觀的存在定值。假設左粒子分別為(順、順、逆);則因總自旋須爲零,右粒子在三方向的自旋相對應爲(逆、逆、順)。在此情況下,如果我們「同時去量同一方向」之左、右粒子自旋,應可以發現(順逆)(順逆)(逆順)三種組合。可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,應可以發現的組合有(順逆)(順逆)(順順)(順逆)(順逆)(順順)(逆逆)(逆逆)(逆順)九種;其中相反自旋的結果佔了 5/9。讀者應該不難推出:不管粒子在三方向的自旋定值爲何,發現相反自旋的結果不是 5/9 就是 9/9,即永遠 ≥ 5/9。

量子力學怎麼說呢? 在同一個假設的情況下, 量子力學也說如果我們「同時去量同一方向」之左、右粒子自旋, 應發現的組合也是只有(順逆)(順逆)(逆順)三種。但量子力學卻說:可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,則會得到不同於上面預測之 ≥ 5/9 的結果!為什麼呢?且聽量子力學道來。

量子力學與或然率

自動角動量。圖/作者提供

在古典力學裡,如果在某個方向測得的自旋角動量為 +½,則其在任何方向的分量應為 +½ cosθ,如圖二所示。但在量子力學裡,因為不可能同時在其它方向精確地測得自旋角動量,因此分量只能以出現 +½ 或 -½ 之或然率來表示;這與古典力學不同,也正是問題所在。但古典力學到底還是經過幾百年之火煉的真金,因此如果我們做無窮次的測量,則其結果應該與古典力學相同:即假設測得 +½ 的或然率是 P,則

-----廣告,請繼續往下閱讀-----

如果角度是 120º,則解得 P 等於 1/4:也就是說有 1/4 的機會量得與主測量同一方向(+½)自旋角動量,3/4 機會量得 -½ 自旋角動量。

讓我們看看這或然率用於上面所提到之貝爾實驗會得到怎麼樣的結果。依量子力學的計算,如果在左邊 A- 方向量得的是順時鐘的話,則因「關連」,右邊 A- 方向量得的便一定(100%)是逆時鐘;但因角動量不能同時在不同的方向上有確定的分量, 故在其它兩方向量得逆時鐘的或然率依照上面的計算將各爲 1/4,因此左、右同時測得相反自旋的或然率只有 ½ [=(1+1/4+1/4)*3/9,三方向、九方向組合]而己。

實驗結果呢?1/2,小於 5/9!顯然粒子在不同方向同時具有固定自旋的假設是錯的!EPR 是錯的!古典力學是錯的!量子力學戰勝了!貝爾失望克勞瑟賭輸了!

量子糾纏態

上面提到如果左邊 A- 方向量得的是順時鐘的話,則右邊 A- 方向量得的便一定(100%)是逆時鐘;可是左、右粒子在作用後,早已咫尺天涯,右粒子怎麼知道左粒子量得的是順時鐘呢?量子力學的另一大師薛定鍔(Edwin Schrödinger)從 EPR 論文裡悟到了「糾纏」(entanglement)的觀念。他認爲在相互作用後,兩個粒子便永遠糾纏在一起,形成了一個量子體系。因是一個體系,因此當我們去量左邊粒子之自旋時,量子體系波函數立即崩潰,使得右邊粒子具有一定且相反的自旋。可是右邊的粒子如何「立即知道」我們在量左邊的粒子 A- 方向及測得之值呢?那就只有靠愛因斯坦所謂之「鬼般的瞬間作用」(spooky action at a distance)了!此一超光速的作用轟動了科普讀者3!筆者也因之接到一些朋友的詢問,為寫這一篇文章的一大動機。

-----廣告,請繼續往下閱讀-----

可是仔細想一想,在古典力學裡不也是這樣——如果左邊 A- 方向量得的是順時,則右邊 A- 方向量得的便一定是逆時——嗎?但卻從來沒有科學家或科普讀者認為有「鬼般的瞬間作用」或「牛頓糾纏態」去告訴右邊粒子該出現什麼。這「鬼般的瞬間作用」事實上是因為在未測量之前,量子力學認為右邊粒子自旋是存在於一種沒有定值之或然率狀態的「奇怪」解釋所造成的。例如我們擲一顆骰子,量子力學說:在沒擲出之前,出現任何數的或然率「存在」於一種「波函數」中。但一旦擲出 4 後,波函數便將立即崩潰:原來出現 4 之 1/6 或然率立即瞬間變成 100%,其它數的或然率也立即瞬間全部變成零了。但在日常生活中,我們(包括 EPR)從不認為那些或然率「波函數」為一「客觀的實體」,故也從來沒有人問:其它數怎麼瞬間立即知道擲出 4 而不能再出現呢?波函數數怎麼瞬間立即崩潰呢?

事實上從上面的分析,讀者應該可以看出:根本不需要用「右粒子『知道』左粒子量得的是順時鐘」,我們所需要知道的只是量子力學的遊戲規則:粒子的角動量不能同時在不同方向上有確定的分量;即如果 100% 知道某一方向的自旋,其它方向的自旋便只能用或然率來表示。一旦承認這個遊戲規則,那麼什麼「量子糾纏態」或「鬼般的瞬間作用」便立即瞬間消失!這些「奇怪」名詞之所以出現,正是因為我們要使用日常生活經驗語言來解釋量子系統中訊息編碼之奇怪且違反直覺的特性4 所致。

結論

在想用日常生活邏輯或語言來了解自然界的運作失敗後,幾乎所有的物理學家現在都採取保利(Wolfgang Pauli)的態度:

了解「自然界是怎樣的(運作)」只不過是形上學家的夢想。我們實際上擁有的只是「我們能對大自然界說些什麼」。在量子力學層面,我們能說的就是我們能用數學來說的——結合實驗、測試、預測、觀察等。因此,幾乎所有其它事物在本質上都是類比和或想像的。事實上,類比或意象性的東西可能——而且經常——誤導我們。

-----廣告,請繼續往下閱讀-----

換句話說,物理學的任務是透過數學計算5,告訴我們在什麼時刻及什麼地方可以看到月亮;至於月亮是不是一直那裡,或怎麼會到那裡……則是哲學的問題,不是物理學能回答或必須回答的。如果硬要用日常生活邏輯或語言去解釋月亮怎麼出現到哪裡,那麼我們將常被誤導。

誠如筆者在『思考的極限:宇宙創造出「空間」與「時間」?』一文裡所說的:『空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要』,我們在這裡也可以說;「量子糾纏態」根本不存在,它只是用來說明量子力學之奇怪宇宙觀的「語言」而已;沒有量子力學的或然率自然界,就沒有「量子糾纏態」的必要。

註解

  1. 讓我們回顧一下在 1925 年最早提出電子自旋觀念的高玆密(Samuel Goudsmit)及烏倫別克(George Uhlenbeck)當時所遭遇到的困擾。如果不是因為他們那時還是個無名小卒的研究生,提出電子自旋的人大概便不是他們了!底下是烏倫別克的回憶:『然後我們再一起去請教(電磁學大師)羅倫玆(Hendrik Lorentz)。羅倫玆不只以他那人盡皆知的慈祥接待我們,並且還表現出很感興趣的樣子——雖然我覺得多少帶點悲觀。他答應將仔細想一想。一個多禮拜後,他交給我們一整潔的手稿。雖然我們無法完全了解那些長而繁的有關自旋電子的電磁性計算,但很明顯地,如果我們對電子自旋這一觀念太認真的話,則將遭遇到相當嚴重的難題!例如,依質能互換的原則,磁能便會大得使電子的質量必須大於質子;或者如果我們堅持電子的質量必須為已知的實驗數值,則電子必須比整個原子還大!高玆密及我都認為至少在目前我們最好不要發表任何東西。可是當我們將決定告訴羅倫玆教授時,他回答說:「我早已將你們的短文寄出去投稿了!你們倆還年青得可以去做一些愚蠢的事!」』。後來呢?電子自旋的概念在整個量子力學的系統裏,脫出了「點」與「非點」這類的爭論,而被物理學界普遍接受。今天當物理學家用「電子自旋」這一術語時,有他們特定的運作定義,絕不虛幻,但也絕不表示電子是一個旋轉的小球(因為那將與實驗不符);但是有時把電子看為自轉的小球,可以幫助我們理解與教育初學者。
  2. 單位為普朗克常數(Planck constant)除以 2π。
  3. 玻爾(Niel Bohr):「那些第一次接觸量子理論時不感到震驚的人不可能理解它。」
  4. 這種量子效應以前一直被認為造成困擾,導緻小型設備比大型設備的可靠性更低、更容易出錯。但 1995 年後,科學家開始認識到量子效應雖然「令人討厭」,但實際上可以用來執行以前不可能處理的重要資訊任務,「量子資訊科學」於焉誕生。
  5. 薛定鍔:「量子理論的數學框架已經通過了無數成功的測試,現在被普遍接受為對所有原子現象的一致和準確的描述。」

延伸閱讀

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

6
1

文字

分享

0
6
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3800字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2198 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1219 篇文章 ・ 2198 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。