0

3
2

文字

分享

0
3
2

引爆下一代記憶體革命的奇異量子特性「電子自旋」—錢嘉陵院士專訪

研之有物│中央研究院_96
・2020/06/18 ・3959字 ・閱讀時間約 8 分鐘 ・SR值 553 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 採訪編輯|郭雅欣;美術編輯|林洵安

電子自旋有多神奇?

電子,是世界上最神祕的粒子之一。它不只帶有負電荷,還會「自旋」。這個奇異的特性,是整個物質世界的根基,也是當代磁學的關鍵字,促成磁性記憶體等重大科技突破。研之有物專訪中研院院士、約翰霍普金斯大學物理系錢嘉陵講座教授,娓娓道來電子自旋如何開啟「現代磁學的黃金時代」。

中研院錢嘉陵院士,任教於美國約翰霍普金斯大學,並為 Jacob L. Hain 講座教授,專注於磁性、超導體、自旋電子學和納米結構材料的研究。錢教授不但是美國物理學會和美國科學促進學會的會士,榮獲美國物理學會的大衛阿德勒獎 (David Adler Award),更得到國際物理與應用物理聯盟(IUPAP)磁學獎與奈爾獎章(Néel Medal)。
攝影│林洵安

電子自旋 = 旋轉的電子?

首先,「自旋 1/2 」的電子是怎麼回事?難道電子會轉,而且永遠只轉半圈?

電子自旋,指的是電子帶有的一種量子性質,簡單說,科學家觀察到了電子具有自旋角動量,而帶電的粒子只要旋轉,就會產生磁場。換句話說,每個電子不只是帶著負電荷的一個小粒子,還是一個「超級迷你磁鐵」(磁矩)。

不過,在一般巨觀的世界裡,物體具有角動量代表正在旋轉,但在量子世界裡,電子雖有角動量,卻不能理解成電子真的在轉。錢嘉陵解釋:「電子是個體積無限小的粒子,沒有體積,所以不可能轉動,自旋完全是量子力學的概念。」沒有體積,卻有角動量,量子世界就是這麼不可思議!

量子世界的另一個不思議,在於所有東西都「量子化」,電子自旋也一樣──電子自旋角動量值在磁場中只能是 1/2 或 -1/2 ,沒有其他可能的值,這就是「電子自旋 1/2 」的由來。許多其他的粒子也有自旋角動量值,但統統只能是 1/2 的倍數,而且相鄰一定差 1 ,例如自旋 1 [1, 0, -1] 或是自旋 3/2 [3/2, 1/2, -1/2, -3/2] 。

電子雖有角動量,卻不能理解成電子真的在轉。因為電子是個體積無限小的粒子,沒有體積,所以不可能轉動,自旋完全是量子力學的概念。而且電子自旋角動量值在磁場中只能是 1/2 或 -1/2 ,沒有其他可能的值,這就是「電子自旋 1/2 」的由來。
圖說設計│黃曉君、林洵安

如此違反直覺的電子自旋,究竟是怎麼被發現的呢?

純屬意外!發現電子自旋 1/2

電子自旋的發現,來自一場「想不到可以成功」的實驗。 1913 年,波耳( Niels Bohr )提出角動量量子化的概念,也就是在量子世界,角動量必定是「普朗克常數除以 2π 」(符號為 ℏ )的整數倍,例如某種粒子具有的角動量是 ℏ 的 1 倍,代表在觀察這種粒子時,角動量只可以是 ℏ 的 -1 、 0 、 +1 倍,不能是 ℏ 的 0.1 倍、 0.2 倍等等介於中間的值。

這個概念對當時的人來說太前衛,違反直覺,反對者包括接下來上場的兩位主角──斯特恩( Otto Stern )與格拉赫( Walther Gerlach )。

斯特恩與格拉赫於 1922 年設計了一個實驗,本意為「反駁」波耳的說法。他們將「銀」蒸發,產生銀原子束,穿過一個不均勻的磁場,投射到屏幕上。在通過不均勻磁場時,帶有角動量的銀原子會受到偏折。如果角動量不是量子化的 (具有各種方向的角動量),偏折的角度將有無限可能,屏幕上應是一片連續分布的銀原子。但實驗結果出人意表:銀原子偏折的角度只有兩個。換言之,角動量真的是量子化的!如以下影片所示:

在做實驗之前,斯特恩信心滿滿的說:「波耳這個沒道理的模型如果是對的,我退出物理圈!」格拉赫也說:「沒有實驗這麼蠢的!」(不過他們還是做了。)但最後他們不但被狠狠打臉,還寄了明信片給波耳告解:「波耳,你終究是對的。」

不過,這兩人的臉可沒被白打,這個實驗正式拉開現代電磁學的序幕!「當時他們看到的現象,其實就是電子的自旋 1/2 !因電子的自旋角動量只有兩種可能: -1/2 及 +1/2 ,所以只會產生兩條偏折路線。」錢嘉陵笑著說:「能夠看見這個現象,真的很走運!」

這兩位科學家有多走運?兩人使用的粒子束雖然不是電子,卻正好是銀原子,這是少數體積夠大足以觀測、整體效應卻又等同一個電子的粒子。「如果他們換一種原子來做,就不會看到自旋了!」錢嘉陵提出另一幸運條件:「這個實驗的銀原子這麼少,怎麼看得見?原來當時的科學家會在實驗室抽雪茄菸,是煙,讓銀原子現形。」

儘管自旋在 1922 年就發現了,但礙於自旋是奈米尺度的現象,需要高科技的觀測技術才能觀察,因此又過了六十幾年,相關成果才開始嶄露頭角,包括發現層間耦合( interlayer coupling )以及巨磁阻效應( giant magnetoresistance )等等。

「自 1986 年起,幾乎每一兩年,大家就找到一個關於自旋的新題目,現代磁學的黃金時代就此揭開序幕。」錢嘉陵回想。

若用一個詞來敘述「現代磁學」,那個詞就是「自旋」。

自旋電子引爆磁性記憶體革命

自旋電子學出現的年代,正是電腦蓬勃發展的年代。電腦裡負責長期儲存的硬碟,內部是塗滿了磁性物質的碟片,也就是每個記憶單元都像是一個小磁鐵一樣,以磁矩的方向來記錄 0 或 1 。因為磁矩的方向不會輕易消失,即使電腦關機、不通電了,也能儲存資料。

然而科技的快速發展,磁紀錄的密度愈來愈高。自 1957 年第一個硬碟發明以來, 50 年內硬碟的儲存密度增加了 10 億倍。這意味著同樣的體積裡多了 10 億倍以上的小磁鐵,或者說,每個小磁鐵的體積縮小了 10 億倍。在磁鐵密度不斷增高、體積不斷縮小的情況下,不論是製作硬碟或是讀寫資料,皆越來越困難。

硬碟包含磁碟片和磁頭,磁碟片負責紀錄資訊、磁頭負責讀寫資訊。每個磁碟片的存儲面都對應一個磁頭,磁碟片以每分鐘數千轉到上萬轉高速旋轉,這樣磁頭就能對磁碟片的指定位置進行讀寫。
圖片來源│Unsplash
圖說設計│黃曉君、林洵安
傳統的磁頭是讀寫合一的電磁感應式磁頭,不論讀寫都以電磁感應的方式進行。後來的硬碟設計將讀取和寫入分開,採用磁阻式磁頭—-通過電阻變化而不是電流變化來感應磁場信號,對於信號的變化更敏感、也更準確,而且讀取信號與磁軌寬度無關,磁軌可以做得很窄,大大增加磁碟的儲存密度。
資料來源│錢嘉陵
圖說重製│林洵安

幸好,我們有了自旋電子學! 1986 年,科學家發現當兩層鐵磁性薄膜中間夾著特定金屬時,隨著特定金屬厚度改變,鐵磁薄膜的磁場方向會跟著改變,以反向、同向、反向、同向……交互循環,稱為「層間耦合」。錢嘉陵解釋:「這個現象很奇特,裡面學問很多,所以一時之間大家都在研究層間耦合,包括我。」

1988 年,法國科學家費爾特( Albert Fert )發現,若對薄膜磁場反向的層間耦合元件加上一個大磁場,將其中一片薄膜的磁場硬是翻轉過來,就可以讓這個元件的電阻降得很低,而且幅度高達 50% ,這就是「巨磁阻效應」。

為什麼會有巨磁阻效應?因為電子自旋有上、下兩個方向。如果今天電子通過的導體裡有上、下兩種方向的磁場,兩種自旋的電子都會受到干擾,這時電阻就會很大。但如果導體裡只有一種方向的磁場,其中一種自旋方向的電子就可順利通過,不受干擾,電阻就會變小。

巨磁阻效應解釋圖。如果今天電子通過的導體裡有上、下兩種方向的磁場,自旋方向為上下的電子都會受到干擾,這時電阻就會很大。如果導體裡只有一種方向的磁場,那麼其中一種自旋方向的電子就可以順利通過,電阻就會變得很小。
資料來源│錢嘉陵
圖說重製│林洵安

巨磁阻效應潛力無窮

巨磁阻效應為硬碟磁紀錄的設計帶來了全新可能。其中一個重要的例子,便是德國物理學家格林貝格(Peter Grünberg)利用巨磁阻效應研發了「自旋閥結構(spin valve structure)」,改變了硬碟讀取頭的運作模式。最早的硬碟讀取頭,是將纏繞有感應線圈磁性物質對準記錄的磁區,再根據感應線圈的磁通量變化所產生的感應電流,來得知該磁區記錄的是 0 或 1 。然而,磁區對感應線圈造成的磁場如果不夠大,感應電流不夠明顯,讀取就可能產生誤差。

自旋閥結構的好處就是只需要小小的磁場,就能產生明顯的電阻變化,不但使得讀取能精準正確,還能減少耗費的能量。

自旋閥主要結構包含:一個磁場方向已固定的磁層 A (pinned layer),一個避免層間耦合的中間層 B(spacer layer),一個磁場可隨外界磁場改變方向的磁層 C(free layer)。 當磁層 C 對準紀錄磁區時,磁層 C 的磁場方向便會隨著磁區而改變。如果磁層 C 產生的磁場方向與磁層 A 相同,整個結構的電阻就會很小;相反的,如果磁場方向與磁層 A 相反, 電阻就會很大。所以只要透過測量電阻,就能瞬間確認磁區的資訊。
圖說設計│黃曉君、林洵安

除此之外,科學家也利用巨磁阻效應,開發了「磁阻式隨機存取記憶體」(MRAM),和以往的各種記憶體相比,MRAM 可望擁有非易失性 (關機斷電也不會流失資訊)、讀寫耗費的能量都少(省電)、處理速度快,磁紀錄密度又高的特性。

下一步呢?包括如何用電流更快翻轉磁矩以完成讀寫,甚至以電子自旋流取代電流等等研究,對於未來的電腦科技,可望帶來世紀性的突破。更多精彩研究,快點開中研院知識饗宴「自旋電子學:現代磁學的黃金時代」,讓錢嘉陵院士帶你走進當代磁學最前沿:

延伸閱讀

  • 錢嘉陵院士網頁
  • 〈 2007 諾貝爾物理獎專題報導–巨磁阻效應之物理原理與應用〉,《成大研發快訊》第一卷第九期。
  • 〈巨磁電阻的原理與應用〉,《科學發展》第426期。

本文轉載自中央研究院研之有物,原文為《電子自旋引爆下一代記憶體革命—錢嘉陵院士專訪》,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2342 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

4
0

文字

分享

0
4
0
一樣都是「work」,物理的「work」定義好像比較簡單?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/25 ・2489字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

功與工作

有些大家慣用的字彙常常會被專業學科借用,專家賦予這些字新的定義,比平常的意思更具體、也更有技術性。物理學有個例子是「功」(work)。如果向一個粒子施加定力,並推動一段距離,你所做的功就定義為施力(沿著粒子運動方向的分量)乘上粒子移動的距離。

這是個很具體的物理量,實際上也是能量的一種形式。做多少功,物體的能量就會增加多少。顯而易見的,這個定義和日常生活中我們對工作(work)的理解有點相關:世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。

世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。圖/pixabay

不過,物理所講的功有明確的意義,使用的範圍也很清楚;相較之下,平常大家說的工作的意思就有些模糊,泛指很多事情。

動力與動量

動量(momentum)這個字看來不太一樣。物理學的動量是 γmv(相對論的珈瑪符號乘上物體靜止質量、再和物體速度相乘),是一種量化方式,用來描述粒子以已知速率往某個固定方向持續前進的傾向。若粒子的速率遠比光速小,γ會非常接近一, 所以能省略掉。

而更廣義的動力(momentum)用來指稱政治運動,或其他社會變動及政策背後的推力。同樣的,一件事的動力愈大,也暗示它愈難停下。不過,這些領域都沒有明確定義何謂「動力」。

物理學中的「場」

到目前為止,我試著不要太常用一些字,但在之後的章節這些字會很常出現。其中一個就是「場」(-eld)。通常場是一片平坦土地的代稱,上頭種了些植物,可能有農夫在照顧,也許還會有幾頭乳牛。

此外這個字也可以代表特定的研究領域或專業,往前翻你就會知道我已經用過這個意思了。這兩個意思其實也可以合併使用,像在解釋稻草人為什麼可以獲得終生教職的時候,就會用到。

物理學的「場」有個更技術性,但還是和前面意義相關的定義。物理學家說的場是個物理量,在空間中某個區域的每個點上都有特定的對應值。如果你待在一個房間內,就可以用各式各樣的場來描述這個環境。身為一位物理學家,你或許會這麼做:

首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。

首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。圖/pixabay

然後選取交於原點的其中一個牆面,沿著地面平行於這面牆的方向走過一段距離(稱為x);接著再順著平行另一面牆的方向走一段(稱為y),你就能碰到地上所有的點。進一步的,只要往上走段距離(叫作z),就可以抵達房間內所有的點了。你需要的只有三個數字:x、y、z。

幾種有用的場

現在可以來談談幾種有用的場了。舉例來說,溫度就是一種場,房間裡的每一點都有一個溫度值。假設平均來看,我們說房內的溫度是攝氏二十一度;如果房間中每一處的溫度都和平均值一樣,那麼你得到的就是一個常量場(constant field):場的值和點的位置無關,也就是和x、y、z沒有關係。

溫度就是一種場。圖/pixabay

然而,天花板附近的溫度很有可能比地面的高出一點,因為熱空氣的密度比冷空氣小,會升向天花板。我們可以用某個場來描述溫度與高度的關係,好比T(z),換句話說,溫度T只和高度z有關。

T是z的函數(function。另一個生活常用字「功能」,這次是被數學家借去用了),可能像T(z) =20.5 + 0.5z,這裡的z以公尺為單位、而T以攝氏溫標(℃)為單位,舉例來說。在兩公尺高的房間內,地面的溫度是 20.5 + 0.5×0 = 20.5℃,而天花板的溫度則是 20.5 + 0.5×2 =21.5℃。

至於天花板和地板之間其他每一點的溫度,都可以用這個溫度場的函數計算出來。其他的場可以用來描述不同的事情,好比空氣密度,或甚至是噪音量。

以上所談的場在每個點都只由一個數字代表。這些場有大小,卻沒有方向。因此我們稱它為「純量場」(scalar -eld)。「純量」(scalar)代表只有大小、卻沒有方向的東西。

某些種類的場則擁有方向,我們叫這種場為「向量場」(vector field)。我之前有提到一些向量場的例子,像是大型強子對撞機的磁鐵製造的電場與磁場。這個房間也有重力場這個向量場。重力場在房內的每一點都有個值(力的大小大約是每公斤九.八牛頓),以及方向(指向地面)。

實際上,電場和磁場都是量子場,重力場可能也是,但科學家還不清楚相關理論。在日常用途中這件事常被忽略掉,但如果你在極小的尺度下觀察這些場,就會發現它其實不是個數值連續體,而是底層的量子場中一連串離散(discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化)的量子、或激發(excitation)的總和(疊加)。

discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化。圖/pixabay

這些激發有點像是波又有點像粒子。電磁學的量子理論―量子電動力學擁有兩個場,分別是光子場以及電子場。我們量測到的電磁波,或是獨立的光子及電子,都是這兩個場的激發。這裡我們又看到一個科學家借用日常名詞的例子。很明顯「激發」和平常我們的用法緊密相關,因為量子場論是個扣人心弦(exciting)的理論。

無論是不是量子理論,場的概念都是一樣的。場是個物理量,在你感興趣的空間範圍內的每一點,都擁有對應的值,可能是單純的數值或是很多個量子的總和。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

1

10
3

文字

分享

1
10
3
探討量子力學,該是「發明」還是「發現」?
賴昭正_96
・2022/12/14 ・4432字 ・閱讀時間約 9 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

西方科學的發展基於兩大成就:希臘哲學家發明了形式邏輯系統(歐幾里得幾何),以及發現了通過系統實驗找出因果關係的可能性(文藝復興時期)。 在我看來,中國的先賢們沒有邁出這一步,也就不足為奇;令人驚訝的是這些發現出現了!——愛因斯坦,1921 年諾貝爾物理獎

在「思考別人沒有想到的東西—誰發現量子力學?」一文之意見裡,有些讀者認為應該用「發明」,而不是「發現」:

  • 量子力學該是發明而非發現的。量子現象是物理學家發現的,因此發明了一套理論來解釋——管用但非常不直覺。
  • 科學被認為一種發現,然而「詮釋」與「解釋」則似乎更像是一種「創造」或「發明」。
  • 所說「發明了一套理論來解釋」不夠清楚。應該說發明了一條方程式——薛丁格的波方程式。之後推演出一整套原子軌域只是數學上的發現必然如此,而且經實驗驗證,大自然確實如此運作。
  • 在概念上個人是以德布洛伊所「發明」的物質波為一個界線…… 對於本文所探討的誰發現量子力學?可以存在著另一個見解為薛丁格「發現」且「找到」或「猜測」出了量子波動方程;波爾、海森堡、波恩等人「發明」了量子力學。

筆者不甚苟同,因此想在這裡拋磚引玉,談一談筆者的看法。

在中文或英文裡,發現(discovery)與發明(invention)均顯然有非常不同的意義。

我們說哥倫布發現新大陸;因為新大陸早就存在自然界,所以我們不會說哥倫布發明新大陸。造紙術、指南針、火藥、及印刷術並不存在於自然界中,所以我們說這是中國古代的四大發明,而不是四大發現。從這裡我們可以看出在日常用語中,發現與發明的分別主要在於該「東西」是不是已經存在於自然界中。

月亮總是存在的,所以只能被發現,而非被發明。圖/Pexels

「存在」的物理意義

可是什麼是「存在」於自然界中的呢?相信大部分的人都持與馬赫(Enerst Mach, 1838-1916,奧地利物理學家、哲學家)一樣的看法:只五官的感覺是真實的、是「存在」的。馬赫的一句名言是:「我不相信原子的存在!」

因此儘管道爾頓(John Dalton)在 19 世紀初就提出原子論,19 世紀中期後化學家成功地將它應用於解釋化合物的組成及化學反應現象,但大部分的物理學家到 20 世紀初還是不相信原子的存在!

1905 年,當愛因斯坦還是瑞士專利局的一位小職員時,發表一篇論文謂液體中看不到的原子會轟擊懸浮粒子,導致可以在顯微鏡下直接觀察到布朗運動(Brownian Motion)。1908 年 5 月,愛因斯坦發表了第二篇關於布朗運動的論文,提供了細節,及可透過實驗檢驗他的理論的方法。

同年,法國物理學家佩蘭(Jean Perrin)進行了一系列實驗後,寫道:「(我的結果)毫無疑問嚴格且準確地證實了愛因斯坦的(預測)公式」。佩蘭的實驗不但說服了許多物理學家相信原子的存在,他也因之獲得了 1926 年諾貝爾物理獎。

法國物理學家,尚.巴蒂斯特.佩蘭(法語:Jean Baptiste Perrin) 圖/wikimedia

可是有人「看」過原子嗎?1955 年,美國賓夕法尼亞州立大學的穆勒(Erwin Muller)和巴哈杜爾(Kanwar Bahadur)終於透過場離子顯微鏡(field ion microscope)在尖銳的鎢樣品尖端觀察到單個鎢原子,可是這並不是肉眼直接看到的,而是透過理論「解釋」所觀察到的。像前面提到之一些讀者的意見一樣,馬赫認為科學理論是用來描述與歸納觀感,它存在於感觀之外,與現實無關;但大部分的物理學家都認為這是哲學的問題,他們是「看到」了原子!物理理論是存在於宇宙中的,等待我們去發現。

在「微中子的故事」一文裡,筆者提到了 1930 年包立(Wolfgan Pauli)為了解救能量不滅定律免於破壞,在「非常絕望下」下提出了一個後來被稱為「微中子」(neutrino)的觀念。當時「微中子」根本不存在宇宙中,我們不知道包立是否認為這是一種發明;但1995年諾貝爾物理獎發給「……通過實驗證明……微中子的存在」之物理學家來內士(Frederick Reines)。

老實說,筆者想破大腦都不知道這一個在基本粒子標準模型裡不帶電、沒有質量、不是電磁波、沒有人直接觀感過、只有能量的「東西」會是什麼「東西」?更令筆者難以相信及理解的是:它竟然還有兩位兄弟姐妹!

發現」還是「發明」?

我們現在就用上面那些觀點來探討,到底牛頓是發現還是發明萬有引力?萬有引力是抽象的、不是「東西」,牛頓當然不可能用眼睛發現;牛頓發現的只是蘋果往地上掉及宇宙中星球之有規律的運動(現象),從中推論出萬有引力(解釋)。因此對牛頓而言,他或許認為萬有引力不存在於自然界中,是他的創造出來的,所以要說是一種發明,好像也沒什麼反對的理由。

牛頓到底是發現還是發明萬有引力?圖/Envato Elements

可是萬有引力真的不存在於宇宙中嗎?1798 年,英國科學家卡文迪許(Henry Cavendish)在實驗室中不但測出兩個物體間的引力,也準確地量得萬有引力常數!所以眼睛看不到的「東西」並不代表不存在於宇宙中——牛頓顯然是發現、而不是發明萬有引力定律!

同樣的道理,普朗克根本沒發現什麼量子「現象」,他只是看到了黑體輻射的光譜分佈,便提出能量量化的觀念,在當時顯然是一種發明,但後來的發展(如原子的光譜)不是證明了「能量量化」存在於宇宙中嗎?量子力學成功地解釋和預測了這些現象,因此也被認為是存在於宇宙中的。

當然,我們知道物理理論或定律是可能被推翻或修正的,但這只代表我們的發現錯了。哥倫布不是以為他到了印度群島嗎?

德布洛伊(Louis de Broglie)「發明」物質波嗎?1927 年貝爾實驗室的戴維森(Clinton Davisson)和格默(Lester Germer)在實驗室中,發現被鎳金屬晶體表面散射的電子顯示出干擾圖案後,大部分的科學家都相信物質波的存在,因此諾貝爾獎委員「敢」將 1929 年物理獎頒發給德布洛伊,1937 年物理獎頒發給戴維森和格默了。

格默(右)和戴維森(左)共同合作,證明了物質的波粒二象性。圖/wikimedia

「是不是已經存在於自然界中」事實上也正是中外專利局判斷是否頒發「發明專利」的基礎;台灣專利法謂:「發明專利是指利用自然界法則之技術思想的創作,對於欲解決之問題,使用適宜的技術手段,產生其功效,達成所預期的發明目的。

發明專利必須具有技術性,不具技術性之發明,例如單純的發現、科學原理、單純之美術創作等,都不符合發明的定義。」在這一法規下,萬有引力、相對論、量子力學…… 等等科學原理都是發現,不能申請發明專利。

量化量子化

既然在這裡談到科學用詞,我們不妨也來談談「能量量化」的意義。

在「天才愛因斯坦曾和諾貝爾獎擦身而過? 相對論也不曾得過諾貝爾獎」的泛科學影片裡,有聽眾建議將「普朗克提出能量量化的觀念」中之「能量量化(quantization)」改為「能量量子(quanta)化」。

筆者認為「能量量子化」中的「子」字有「微粒子」的意義在內;但普朗克在他那篇「開創量子力學」的文章中,只認為空心黑色球體內任一頻率(n)輻射能量均不是連續的,而是由 hn 單位組成的,輻射的發射和吸收必須以hn進行,從沒提過「能量量化」的觀點,更甭說具有「微粒子」之意的「能量量子化」了。因此我們只能從以後的發展來判斷。

在古典力學裡,氫原子中的電子可能具有的能量應該是連續的;但後來發現只能存在某些能階上才可以解釋光譜——這應該說是一種「能量量化」的現象,而不是「能量量子化」的現象!讓我們在這裡用一個日常生活的例子或許更能說明其間的差異:實數是連續的(質),但我們用它來數人頭時,卻發現它只能存在於整數的「數階」上(量)。讀者覺得用實數被「量化」了、或是被「量子化」了比較適合?

結論

愛因斯坦謂「西方科學的發展基於兩大成就:希臘哲學家發明了形式邏輯系統,以及發現了通過系統實驗找出因果關係的可能性」。

從這名言裡,我們可以看出愛因斯坦顯然認為因果是存在於宇宙中的,將它們連在一起的形式邏輯系統(formal logical system)才是一種發明;所以我們可以說薛丁格發明了「波動量子力學」;海森堡(Werner Heisenberg)、伯恩(Max Born)和喬丹(Pascual Jordan)發明了「矩陣量子力學」;狄拉克(Paul Dirac)發明了希爾伯特(Hilbert)空間上的「算子(operator)量子力學」——他們以不同的數學形式表達了物理學家所發現的量子物理(理論)。

在「不用數學就可以解釋—相對論的著名想像實驗「雙胞胎悖論一文裡,筆者提到了時間及空間是人類製造出來便利溝通的語言。為了解釋觀察到的現像,不同運動者對時間便必須有不同的認知,否則就會發生像「雙胞胎悖論」(twin paradox)一樣的矛盾。

「雙胞胎悖論」提及:當太空旅行者回到地球後,發現自己比留在地球的雙胞胎手足更年輕。圖/Pexels

同樣地,作家在寫一篇文章時,也必須假設讀者對主題具有某些程度的了解與認知。如果假設不對,那便像內人讀筆者的文章一樣,不管筆者是用發明或發現,對她來說都是「不知所云」!而如果能在讀者心中起了共鳴呢?則不管筆者是用發明或發現,相信讀者都能心領筆者事實上是在有意或無意中表達了對某一物理觀念的看法。

延伸閱讀

所有討論 1
賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。