0

0
0

文字

分享

0
0
0

玻璃天花板在哪裡?從一戰後口述歷史,看女性科學家的困境與突破(上)

何如
・2020/01/09 ・3433字 ・閱讀時間約 7 分鐘 ・SR值 564 ・九年級

作者 / 莎莉.霍羅克斯 (Sally Horrocks)

本文編譯自 Nature 的文章《The women who cracked science’s glass ceiling》,作者為一名科學史學家,從 2011 年起便成為英國科學口述歷史計畫的資深顧問,負責收集從 1940 年代起的英國科學家們的生平與職涯故事。

透過這些口述歷史,作者爬梳了英國女性科學家們的職業生涯,以及戰爭歷程、時代演變下的處境。本文期望展現際遇不同女科學家們如何為事業、科學、與社會奉獻,搏得今天的位置,以及往後需要面臨的挑戰。

圖/Pixabay

結婚了就該離職,連餐廳都只有男性限定

一戰期間,從科學到軍隊的大洗牌,為當時的科學家帶來了大量的工作機會;這樣的狀況一直持續到戰後,尤其在工程領域更加顯著,像是生化學家凱瑟琳.庫爾漢.拉斯伯里 (Kathleen Culhane Lathbury) 便因此而受益。1920-1930 年代初期,拉斯伯里在英國的一間製藥公司 British Drug Houses 工作,負責監管胰島素的製造。

但因為公司餐廳僅限男性,所以在用餐時發生的所有社交活動她都被排除在外。另一位與拉斯伯里同在化學領域工作的女性的筆記上就提到:

男性通常畢業後一開始就會被給予有相當尊嚴及份量的職位,但在大學時期和他同樣努力的女性卻很難獲得這樣的機會,還會被持續的貶低⋯⋯就算客觀上她的工作表現已經令人滿意,但她還是會因為階級差異,而被認為應該獲得比男性夥伴來得低的成果。

1922 年,拉斯伯里從倫敦皇家霍洛威學院1畢業,她在申請工作時署名「克‧庫爾漢 (K. Culhane)」來隱藏她的性別,並且無償的為皇家化學研究所 (Royal Institute of Chemistry) 工作。對於在化學領域工作的女性而言,身體健康跟厚臉皮比知識背景來得重要。

晶體學學者凱瑟琳.庫爾漢.拉斯伯里是首先入選為英國皇家學會成員的兩位女性之一。圖/Gettyimages

從她的故事可以知道,縱使戰間期 (inter-war period) 對女性科學家的雇用有所增加,但這些工作環境依舊存在著對女性的排外與隔離。而女性與男性在職業模式上的龐大差距,更是一直延續到二戰乃至冷戰初期。

在那個年代,女性普遍受限於「一旦結婚就會辭職」的預想當中。除了少數例外,就連文職人員也會因為結婚而被要求離職,所以想要工作得較久的女性都會保持單身。倘若有女性的工作表現對國家有足夠的重要性,那麼她便能免於受到結婚即離職的限制——但實際上,很少有人能得到這樣的豁免權。

圖/Pixabay

航空工程學家法蘭西斯.布拉德菲爾德 (Frances Bradfield) 便是少數的例外。布拉德菲爾德自 1918 年便加入皇家航空研究院 (Royal Aircraft Establishment, RAE),主要負責飛行器的風洞項目,她不僅指導了許多年輕的男性同事,也獲得了大家的尊重,並直到 1955 年才正式退休。

然而與她同年加入 RAE 的穆里爾.巴克 (Muriel Barker),與布拉德菲爾德皆畢業自劍橋大學紐納姆學院2,際遇卻全然不同,她在 1922 年嫁給同事後不久便離職。

另外,同樣在 RAE 工作的航空引擎專家碧翠絲.席林 (Beatrice Shilling),也是少數免於婚後離職的女性,1938 年結婚的她一直工作到 1969 年才退休離開。席林在早期的戰鬥機型「噴火」(Spitfire) 與「颶風」(Hurricane)中開發了能夠避免引擎停機的裝置,對於 1940 年的不列顛空戰3具有相當重大的貢獻。

1940 年代,碧翠絲.席林研發了能夠防止飛行器引擎突然停機的裝置。圖/Fred Macarry, Flickr, CC BY-ND 2.0

境遇大相逕庭的女科學家們

1945 年,X繞射晶體學學家凱瑟琳.朗斯戴爾(原姓亞德利)(Kathleen Lonsdale (née Yardley)) 與生化學家瑪喬麗.斯蒂芬森 (Marjory Stephenson) 率先入選為英國皇家學會 (Royal Society) 的兩名女性成員。長年就職於醫學研究委員會4的斯蒂芬森更是在 1943 第一次受聘為大學講師。

而朗斯戴爾則是在研究時曾受過諾貝爾物理獎得主威廉.亨利.布拉格 (William Henry Bragg) 的支持,自1929 年成家後她便開始在家裡工作,而她的丈夫則承擔起了家務。

然而,並不是所有人都這麼幸運。因為政府提供公費以鼓勵在學生就讀工程學來重建戰後的英國,貝里爾.普拉特 (Beryl Platt) 在就讀劍橋大學格頓學院5前將主修轉為機械工程6,並於 1943 年加入霍克飛機公司 (Hawker Aircraft Company),但在戰後不久7她便與紡織商人結婚,結束了她在工程領域短短的職業生涯。

工程師貝里爾.普拉特(左)與同事在他的婚禮上。圖/Gettyimages

跟同樣為科學家的伴侶結婚的女性科學家,尤其是那些任職於大學裡的,有時候能夠延續她們的研究工作。

好比 1908 年獲得碩士學位的有機化學家格特魯德.羅賓森 (Gertrude Robinson),結婚8前便在曼徹斯特大學9擔任哈伊姆.魏茨曼 (Chaim Weizmann)10的研究助理。婚後她更與丈夫合作有關於有機化學領域的研究,甚至發表了超過三十篇論文。

當時,因為有愈來愈多英語系國家的大學會聘請來自英國的研究學者和工作人員,她和丈夫便也因此曾在澳洲雪梨大學11短暫工作過。

從 19 世紀開始,科學相關的工作開始會像羅賓森夫婦這樣,具有在國際間移動的特質,但依舊是男性較女性更為有利。1887 年至 1943 年間加入皇家化學研究所的英國化學家中,便有超過 16% 的職業生涯在海外度過。

圖/GIPHY

準備二戰需要科學家,但……

1939 年,全世界都在緊鑼密鼓地籌備第二次世界大戰,英國開始將科學家視為國家的財產,並建立相關制度12以利招募培訓科學家與工程師,例如讓能修習物理或工程領域課程13的男性在完成學位後,可以獲得兵役豁免。儘管國家如此需要這些專家學者,卻並不鼓勵大學增加科學與工程領域女性學生的比例。

彼時不論男女在完成學業後都要直接進入備戰工作,有些甚至更早便參與到其中。例如微生物學家娜達.詹尼特(原姓菲利普斯)(Nada Jennett (née Phillips)) 跟其他同學14便在休假時研究青黴素 (Penicillin)15製造的問題。

在戰爭之後,詹尼特被培訓成為一名教師,並一直在大學實驗室和醫院裡工作直到她第一個小孩出生。在回到微生物領域以前,詹尼特還兼職教自然課,而後還發展了園藝設計的第二事業。

對於男性而言,戰時的工作往往會是人生的轉捩點,成為未來長久成功的事業基礎;然而對女性來說,卻普遍只是在負擔起全職家務前的小插曲罷了,爾後迎來的工作多半是一些無薪的志願工作或是兼職雇用,很少會有持續而長久的職位。

圖/GIPHY

但至少有些原先不太願意錄用女性的雇主在這段時間漸漸開始鬆綁,像是帝國化學工業16就是其中之一。他們的應徵廣告明確表示了優先錄取「英國籍的女化學家」。但像這樣的國籍限制或許也解釋了為什麼流亡的女性科學家不一定能夠找到與她專業領域相關的工作,就算她們再有能力也一樣

舉例來說,1941 年三月,《Chemistry and Industry》便刊登了這麼一則廣告:

「流亡自德國的女化學家 (LADY CHEMIST),37 歲,具有柏林的博士學位,正在尋求一個職位。有橡膠化學相關的研究經驗,習慣於翻閱搜查資料,並能將德文翻譯成法文。」

就已婚女性而言,原先因為有了小孩、要專注於家務而離開科學事業,就算此時想要為戰爭做出一點貢獻也很難找到合適的工作。像拉斯伯里就是一個例子,在短暫的做一些管理發放薪資的人事工作 (wages clerk) 後,她最後也只能在皇家兵工廠 (Royal Ordnance Factory) 負責統計上的品管控制。

在下一篇文章中,我們將繼續看到,女性科學家在 20 世紀中葉以後的機會擴展。在近現代的五十年內,人們是如何逐步消除就業上的障礙,建立職業上的平等態度。而法律和制度上的改變,又為我們今天奠定下怎麼樣的基礎呢?

註解:

  1. 倫敦皇家霍洛威學院 Royal Holloway, University of London。
  2. 劍橋大學紐納姆學院 (Newnham College, Cambridge),女子學院,於 1871 年建立
  3. 不列顛空戰 Battle of Britain
  4. 醫學研究委員會 Medical Research Council
  5. 劍橋大學格頓學院 Girton College, Cambridge
  6. 普拉特原先主修的是數學。而在當時,機械工程學生的男女比是 250 : 5。
  7. 她曾短暫的為英國歐洲航空 (British European Airways) 工作,主要是負責航空安全。
  8. 有機化學家格特魯德.羅賓森 1912 年與跟後來的諾貝爾獎得主羅伯特.羅賓森 (Robert Robinson) 結婚。
  9. 曼徹斯特大學 University of Manchester。
  10. 哈伊姆.魏茨曼,在 1949 年成為以色列的第一位總統。
  11. 澳洲雪梨大學University of Sydney, Australia
  12. 根據勞動部 (Ministry of Labour) 與「國民服役」法案 (National Service)。
  13. 這些課程從三年被壓縮成兩年,即便是需要至少四年才能拿到榮譽學位的蘇格蘭也不例外。
  14. 布里斯托爾大學 (University of Bristol)
  15. 他們會到葛蘭素製藥公司 (pharmaceutical company Glaxo) 進行研究。
  16. 帝國化學工業 Imperial Chemical Industries,簡稱ICI,後來成為了英國最大的化學製造商。
文章難易度
何如
12 篇文章 ・ 1 位粉絲
「因為人因思想而獨特,但不說出來就什麼都不是。」 —為自己的冗言話多辯解的小菜鳥。

1

3
1

文字

分享

1
3
1
權力從何而來?從基因上來看男女不平等的起源!——《我們源自何方?》
馬可孛羅_96
・2023/03/18 ・2975字 ・閱讀時間約 6 分鐘

歷史學家長久以來都在爭論,某個人如果留下了不成比例的後代數量,對於人類歷史影響會有多大。星團分析提供了客觀的資訊,讓我們知道在歷史中不同的時間點上,權力極端不平等的重要性。

以 Y 染色體追蹤權力不平等的原因

托馬斯.奇維希德(Toomas Kivisild)與馬克.史東金(Mark Stoneking)各自帶領的研究,都比較了對於 Y 染色體序列和粒線體DNA星團分析的結果,並且得到一個令人驚奇的結果。

兩個人計算一對序列中 DNA 字母的差異數量,由於突變的累積速度是固定的,他們的研究可以估計出不同的兩人組合之間,純父系譜系(Y 染色體)的共同祖先和純母系譜系(粒線體 DNA)的共同祖先各自存在的時代。

在關於粒線體 DNA 的研究中發現,現今族群中幾乎所有的兩人配對,在萬年內純母系譜系相同的機率非常低,世界許多地區是在那個年代之後才出現了農業。如果那段期間中族群都很大,可以預期會出現這樣的結果。

但是在關於 Y 染色體的研究中,發現的模式卻截然不同。在東亞人、歐洲人、中東人和北非人,那些科學家都發現許多「星團」,這些共同的男性祖先生活大約在五千年前。

五千年前在歐亞大陸,正好發生了考古學家安德魯.謝拉特(Andrew Sherratt) 所說的「次級農產品革命」(Secondary Products Revolution):人類發現到牲畜除了能作為肉品來源之外,還有其他用途,例如拉車、耕地、產生乳汁與織品(例如羊毛)。

次級農產品革命後,民族擴張造成權力不平等的社會。圖/envatoelements

莫約也是從青銅時代開始,拜馴化馬匹與發明輪子及具備輪子的交通工具之賜,人類移動的能力增加,同時能夠累積大量財富。同時累積的還有銅和錫等比較稀有的金屬,這些金屬是青銅的材料,可以運到數百或甚至數千公里外。

Y 染色體模式指出,就是在這段時間,人類之間的不平等狀況增加了,遺傳狀況道出了當時一個群體中,權力集中到一小部分人的程度是前所未有的,可能是新的經濟體制促成了這種狀況。

在那個時期中,具有權力的男性對所處族群的影響力非常巨大,遠遠超過之前的時代,讓有自己 DNA 的後代數量超過成吉思汗留下的。

顏那亞民族擴張帶來的不平等社會

結合古代 DNA 和考古學研究,我們正在開始了解到這種不平等可能具備的意義。五千年前,剛好是顏那亞人在黑海與裏海的北方興起的時間。在第二部中討論過他們藉由馬匹和車子,首度能夠使用廣闊草原地帶上的資源。

遺傳資料指出,顏那亞人和他們的後代非常成功,幾乎取代了在其西方的歐洲北部農耕者,以及在其東方的中亞狩獵-採集者。

顏那亞(Yamna)文化的擴張。圖/wikipedia

考古學家金布塔絲認為,顏那亞社會中性別不平等和社會階級分明的現象是前所未有的。顏那亞人留下了巨大的墳丘,中心部位中,男性的骨骸佔了約八成,這些骨骸上通常具有暴力傷害的痕跡,同時有其他可怕的金屬短劍和斧頭陪葬。

金布塔絲認為,顏那亞人抵達歐洲,預示了兩性之間權力關係的轉變。這個時期剛好是金布塔絲所說的「舊歐洲」沒落時期。舊歐洲的社會比較少暴力活動的證據留下,社會中女性處於核心地位,到處都有小型女神雕像留下。

在她重構出的歷史中,「舊歐洲」被以男性為中心的社會所取代。相關證據並不只來自於考古證據,那些可能經由顏那亞人所散播的印歐文化,例如希臘文化、北歐文化和印度文化中,神話都是以男性為中心。

對於文字歷史時代之前人類文化的詳細描述,都需要謹慎看待。不過古代 DNA 資料的確證明了顏那亞人的社會中,權力集中在少數菁英階級的男性。顏那亞人的 Y 染色體類型就只有幾種,代表了少數男性成功散播了自己的基因。

相較之下,顏那亞人的粒線體 DNA 序列就更為多樣。顏那亞人的後代或是他們的近親,把自己的Y染色體散播到歐洲和印度,這種擴張對人口造成了重大的影響。在歐洲與印度,這些 Y 染色類型在青銅時代之前並不存在,但是現在卻是這兩個區域中主要的類型。

現今在歐洲西部和印度的人口中,來自草原的 Y 染色體類型所佔的比例要比草原基因組其他部分所佔的比例高出許多,從這點就可以看出來,顏那亞人的擴張並非全然都是友善的。草原男性血統所佔的比例高,代表了顏那亞人的男性後代在政治上或經濟上比較成功,在與當地男性競爭伴侶的時候占優勢。

我所知最令人驚訝的例子來自於歐洲西南端的伊貝利亞半島,在四千五百年前到四千年前青銅時代一開始的階段,來自於顏那亞的血統抵達了那裡。

布萊德利的實驗室和我的實驗室各自從那個時期的遺骸中取出古代 DNA,發現在草原血統抵達時,伊比利亞族群中有百分之三十受到取代,但是 Y 染色體受到取代的幅度更高:在我們的資料中,在具有顏那亞人血統的男性,有九成帶有來自草原的 Y 染色體類型,這種染色體之前未曾在伊比利亞出現過。顯然草原族群在擴張的時候,階級高低非常分明,而且權力分配極度不平衡。

權力累積代代相傳

對於「星團」的研究主要靠分析Y染色體和粒線體 DNA,那麼分析全基因組會有幫助嗎?

用全基因組資料可以重建出最近一萬年中絕大多數農業群體的祖先族群大小,發現到在這段期間族群增大了,看不出 Y 染色體所指出在青銅時代出現了瓶頸效應。那是只彙整 Y 染色體資料和粒線體 DNA 資料所看不出來的。

其實我們很清楚,用 Y 染色體是看不出來某些遺傳類型是否能夠更成功的傳到後代。理論上,我們可以用天擇來解釋,說有些 Y 染色體類型能夠讓攜帶者具有某些生物優勢,例如生育能力提高。

某個時期男性權力擴張到可以與大量女性交配,並把優勢與權力留給自己的後代。圖/GIPHY

但事實上全世界在同個時期有數個地方同時都出現了這種遺傳模式,那個時段剛好是社會階級明顯的社會興起時期,用天擇利益來解釋多個地區各自出現了有利於生物繁衍的突變,實在太勉強。

我認為比較有可能的解釋是在這段時期,某一個男性開始累積的權力大到不只能夠和大量女性交配,而且能夠把自己在社會上的優勢傳給下一代,確保自己的男性後代在生育上也那麼成功。

代代相傳之下,使得這些男性的 Y 染色體在族群中的頻率增加,留下的遺傳痕跡充分表示出過往社會的狀況。

在這段時期,個別女性累積權力也有可能比以往更多。但是由於生物特性的限制,即使是集權力於一身的女性也不可能有超多的後代,因此社會不平等在男性血脈中更容易看出來。

——本文摘自《我們源自何方?:古代DNA革命解構人類的起源與未來》,2023 年 3 月,馬可孛羅出版,未經同意請勿轉載。

所有討論 1
馬可孛羅_96
22 篇文章 ・ 17 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。

0

19
0

文字

分享

0
19
0
轉變了性別,周圍的眼光也變了?從巴雷斯教授的故事看見社會中隱含的歧視——《隱性偏見》
平安文化_96
・2022/12/16 ・2134字 ・閱讀時間約 4 分鐘

性別認同使「他」決定成為男生

在治療癌症多年之後,本‧巴雷斯(Ben Barres)回憶他是如何措辭向腫瘤科醫師提出了請求。

他問道:在切除我的乳房時,能否請你把另一個乳房也一併拿掉?由於他的家族有癌症病史,醫師便同意了,但事實是巴雷斯只是想要擺脫那雙乳房。他有個女性名字,身為女孩長大成人,但他對自己的女性身分一向感到不自在。四歲時他覺得自己是個男孩,青春期的身體變化令他難安,成年後要把自己塞進高跟鞋和伴娘禮服也令他不自在。

那是一九九五年,是在變性人拉維恩‧考克斯(Laverne Cox)和凱特琳‧詹納(Caitlyn Jenner)成為家喻戶曉的人物之前,是在谷歌搜尋「變性人」會得到法律建議之前,甚至是在有谷歌之前。當時巴雷斯並不了解身為變性人是什麼意思,但是切除了雙邊乳房是種莫大的解脫。一年之後,他讀到一篇講一名變性男子的文章,他豁然了悟。

巴雷斯渴望展開荷爾蒙治療,但是他有一大顧慮:他的事業。當時四十三歲的他是史丹佛大學的神經生物學家,剛發現了神經膠質細胞的重要,這種大腦細胞的角色在那之前一直被低估,他的發現具有開創性。

科學界的同儕一直視他為女性,他不知道他們對於他改變性別會有什麼反應。學生是否會不想再參與他的實驗室工作?他是否不會再受邀參加學術研討會?

科學界的態度變化

科學界的確作出了反應,但不是以巴雷斯所擔心的方式。在他變性之後,不曉得他是變性人的那些人開始更仔細地聆聽他的意見,不再質疑他的權威。身為中年白人男子,在開會時不再有人打斷他。在證據不夠充分的時候,別人一次又一次地姑且相信他。他甚至在購物時得到更好的服務。

在一場研討會上,他無意間聽到一個不知道他是變性人的科學家說:「本今天做的專題研討很棒,再說,他的研究成果要比他姊姊強得多。」

學術界在巴雷斯變性後對他的態度有了改變。圖/envato.elements

巴雷斯很驚訝。在變性之前,他很少察覺性別歧視,甚至連明顯的例子都沒注意到。巴雷斯還就讀於麻省理工學院大學部時,有一次他在一堂數學課上解開了一個難題,是全班唯一解開這道題的學生,教授說:「想必是你男朋友替你解答的。」這句話冒犯了巴雷斯。題目當然是他自己解開的,他甚至根本沒有男朋友。

可是當時他不認為教授此言帶有歧視,因為他以為性別歧視已經不存在了。就算性別歧視還存在,由於他對女性身分缺少認同,不足以讓他覺得性別歧視會發生在他身上,他只氣憤自己被指控作弊。在變性之前,巴雷斯認為自己受到的對待就跟其他人一樣。

現在他有了驚人的證據,證明了事情正好相反。那簡直就像個科學實驗:他擁有同樣的學歷、同樣的技能、同樣的成就、同樣的職位。除了一個變數之外,其餘的變數都維持不變。

巴雷斯清楚看出,他的日常遭遇、他的科學家生涯、他的生活全都由別人眼中所見的性別所塑造,以他自己以前不曾看出的方式。在變性之前,他的想法、貢獻和權威都遭到貶抑,雖然並非公開,也非全盤,但是當造成貶抑的因素忽然消失,這一切就變得清晰可見。如今,男性和女性所受到的差別待遇被看清了,就像花瓣在紫外線照射下呈現出新的圖案。

日常中的一切都是由別人眼中性別所塑造。圖/envato.elements

科學界中對女性的偏見

因此,二○○五年,當哈佛大學校長薩默斯(Larry Summers)表示科學界的女性之所以不多,可能係由於兩性在能力上的先天差異,巴雷斯無法默不吭聲。他在《自然》雜誌(Nature)上發表了一篇由衷的呼籲,要求科學界關注偏見的問題。

「這就是女性在學術界工作所佔比例不高的原因」,他說,「原因不在於照顧小孩,也不在於家庭責任。」他又說,在他改以男性的身分在科學界工作之後,「這個念頭在我腦中浮現了一百萬次:現在的我更受到重視。」並不是說巴雷斯在變性之前從未在職業生涯中遇到過障礙和偏見,「只是我從來沒有看出來」,他告訴我。

我們當中許多人都曾在與別人接觸時有過經驗,使我們納悶偏見是否起了作用。但是我們呈現在外界眼中的樣子如果不曾有過戲劇化的轉變,我們可能就沒有機會來證實這些直覺。

如果我們的體重有了可觀的增減,或是有了明顯可見的殘疾,我們或許能夠向自己證實這些直覺。如果我們去其他國家旅行,而我們的膚色在當地具有不同的意義,那麼我們或許也會看得出來。就像有個黑人學生告訴我,他在義大利旅行時有種奇怪的感覺,後來他明白那是因為他在商店裡被懷有疑心的店員緊盯著。

異性婚姻的夫妻,如果配偶進行了性別轉換,就往往會看出當他們還是異性婚姻的伴侶時多麼受到認可。最終,我們當中許多人都將會感受到老年人所受到的歧視和不尊重。但我們往往還是很難確定自己所遭遇的偏見。

——本文摘自《隱性偏見》,2022 年 10 月,平安文化出版,未經同意請勿轉載

平安文化_96
5 篇文章 ・ 3 位粉絲
皇冠文化集團旗下的平安文化有限公司以出版非文學作品為主,書系涵蓋心理勵志、人文社科、健康、兩性、商業……等,致力於將好書推廣給廣大讀者。

0

4
3

文字

分享

0
4
3
生兒子還是生女兒?動物性別決定靠光線、細菌、掉落地點,與腳程快慢!
Mirror Voice_96
・2022/09/28 ・3523字 ・閱讀時間約 7 分鐘

本文轉載自 鏡好聽—知識好好玩節目

人類的性別,男女的比例接近 1:1,那其他動物也是如此嗎?我們是由染色體決定性別,大自然中又有哪些讓人意想不到的性別決定方式?由鏡好聽攜手國立自然科學博物館館長焦傳金博士,共同製作的 Podcast《動物好好玩》第三季第二集中,就談到了動物各種奇特的性別決定模式。問題看似簡單,但其實,動物界中有很多我們意想不到的性別決定方式!

以下文章摘自節目中的精彩內容:

動物的生殖系統不只 XY,還有 ZW、X0、 Z0 !

以人類而言,我們是由性染色體決定性別。雄性是 XY,雌性是 XX。

在現今的哺乳動物中,Y 染色體的長度遠小於 X 染色體,因此 Y 染色體上的基因數量遠少於 X 染色體。不過大約 1 億 6 千萬年前,XY 染色體上的基因數量是一樣的,但因為 Y 染色體上突變出一種性別決定基因,因此讓它出現差異。

人類男性的核型;可明顯看出,Y 染色體的長度遠小於 X 染色體(右下最後一對)。圖/維基百科

這個性別決定基因出現在 Y 染色體之後,它就跟其他成對的體染色體不同,也因此無法藉由基因重組,來互相交換遺傳訊息,即使有了缺損也無從補充。這導致了 Y 染色體持續退化,長度越來越短,基因數量也越來越少。目前人類的 Y 染色體長度已經不到 X 染色體的三分之一,基因數量也有很大的差別。

根據這樣的推論,未來 Y 染色體是否會完全退化消失呢?雖然我們無法預期人類 Y 染色體的命運,但已有學者發現,日本刺鼠和鼴田鼠已經完全失去了 Y 染色體,只剩下 X 染色體。他們雖然仍可正常維持雌雄兩性,但性別決定基因究竟是在哪一個染色體上,目前還沒有研究出來。

不過,生物界不只有 XY 系統,還有 ZW、X0 與 Z0 系統。在 XY 系統中,XX 是雌性、XY 是雄性,由 Y 染色體 /雄性來決定性別。但 ZW 系統則相反,ZZ 是雄性、ZW 是雌性,性別由 W 染色體決定,也就是雌性決定。鳥類就是屬於這一種系統,包括雞、鴨,另外蠶寶寶也是屬於這種 ZW 系統。

雞屬於 ZW 系統。圖/Pexels

至於 X0 ,意思是這個系統只有一個 X 染色體,沒有 Y 染色體,0 代表沒有。他們是由精子中是否有 X 染色體來決定性別,因為每一個卵一定有 X 染色體,當受精卵中有兩個 X 染色體,XX 為雌性,而X0 則為雄性。蝗蟲、蟋蟀這些直翅目昆蟲,都是屬於 X0 系統。

Z0 系統則相反,ZZ 是雄性、Z0 是雌性,決定關鍵在於卵中是否帶有 Z 染色體,也就是由雌性來決定性別。目前科學家已經發現,鱗翅目的昆蟲,像是夜間的蛾類就是屬於 Z0 系統。

霸氣女王蜂的儲精囊,還有靠積分制決定性別的劍尾魚

但昆蟲作為地球上種類與數量最多的生物,他們還有許多複雜多樣的性別決定方式。

決定蜜蜂性別的關鍵在於是否受精。圖/Pexels

像是蜜蜂大部分都是母的,但一個蜂巢中只有女王蜂有生殖能力,每年到了交配的季節,女王蜂就會離開蜂巢進行「婚飛」,與雄性的蜜蜂在空中交配。交配後的精子會暫時存放在女王蜂的儲精囊,由女王蜂決定是否讓她的卵受精。如果是受精卵,就會變成雌性的蜜蜂或是「工蜂」;沒有受精,則是雄性的蜜蜂。因此,決定蜜蜂性別的關鍵在於是否受精。生男或生女,通通由女王蜂自己做主!

除了蜜蜂,其他的社會性昆蟲,例如:螞蟻或白蟻,也都很類似,由受精與否的染色體數量來決定性別。如果有受精而獲得成對的染色體,就是雌性;沒有受精,只有一半的染色體,就會發育成雄性。

還有一些魚類也很特別,例如:劍尾魚和多種吳郭魚,他們不是全靠性染色體來決定性別,而是合成加總。因為細胞中的其他染色體上,也有性別決定基因,因此,決定性別的方式是看基因總量,如果受精卵中所有決定雄性的基因總量,超過了決定雌性基因的總量,就會發育成雄性,很像是比賽的積分制,哪邊多就脫穎而出。

總而言之,雖然有些動物是 Y 染色體決定,有些是 W 染色體,但這些都是由基因決定。這種生殖方式,性別比例通常是固定的。但還有另外一些動物,他們決定性別的方式就非常彈性!

更彈性的性別決定方法:氣候、光線、掉落地點

烏龜的性別是根據環境條件決定的。圖/Pexels

地球上早期演化成功的爬行類,如烏龜或蜥蜴,出生性別會由環境中的溫度來決定,換句話說,精卵結合時還是性別不明的狀態,等到胚胎中的性器官要發育,才會根據環境條件決定會生出男寶寶或女寶寶。

這是因為對這些動物來說,最好的生存策略,就是在氣候最合適的時候誕生體型比較大的雌性,這樣就可以在食物充份下,產生最多的卵,讓族群能夠大量繁殖。反之,若環境條件較差,則產生體型比較小的雄性,因為精子含的養分較少,細胞也較小,就算是惡劣的環境下也能產生足夠數量的精子,讓族群延續。

以海龜來說,海龜蛋要孵化時,沙灘與周圍環境的溫度會決定小海龜的出生性別。假如環境是 20℃ ~27℃ ,孵化出的全部都是雄性海龜,若是 30℃ ~到 35℃ 下,孵出來的小海龜則都是雌性,在 28℃ ~29℃ 之間,雌性與雄性的比例會各半。簡單來說,高溫環境會生出母海龜,低溫環境會生出公海龜,也就是所謂的「辣妹與酷哥」。

不過,也不是所有爬行類動物都是「辣妹與酷哥」型。鱷魚就剛好相反,他們的胚胎在 30℃ 以下孵化出的幾乎都是母鱷魚,若高於 32℃ 則大部分是公鱷魚。沙漠中的陸龜或蜥蜴也很類似,低溫時才會產生雌性。因為在沙漠中,高溫會造成食物缺乏,所以在低溫的雨季更適合生出雌性,讓族群大量繁殖。

除了溫度之外,還有一些動物非常特別,性別是由光線決定。例如,中國特有的揚子鱷 (又稱做中華短吻鱷),主要分佈在長江中下游地區,是世界上體型最細小的鱷魚之一。如果巢穴在潮濕陰暗的地方,就會孵化出較多的母鱷魚;若巢穴能曝曬到太陽,就容易生出公鱷魚。

揚子鱷是中國國家一級保護動物;IUCN 列為極危物種。圖/維基百科

寄生蟲又是另一種類型。他們的性別也會受到環境影響,但對寄生蟲來說,環境其實就是宿主的養分多寡。例如:許多線蟲是靠營養條件來決定性別,他們通常在性別未分化的幼齡期,就侵入了宿主體內,要是感染率低,也就是線蟲數量還不多、營養條件比較好時,多數線蟲會發育成雌性;但當感染率高,營養條件開始變差了,大部分就會發育成雄性。

還有一種生物更神奇,竟然是由另一種寄生的生物來決定性別。或許有人聽過一種叫做「鼠婦」的動物,他們是陸地上的甲殼類動物,生活在潮濕陰暗的環境,因為外型可愛,受到驚嚇時會捲成一團,所以也被當作懶人寵物來飼養。

鼠婦的性別是 ZW 系統, ZZ 發育成雄性,ZW 成為雌性。但有一種稱做「沃爾巴克體」的微生物會感染雌性的鼠婦,進而干擾雄性胚胎的生殖器官發育,讓所有的胚胎都變成雌性,就算染色體是 ZZ 也一樣。這樣一來,能決定性別的就不再是 W 染色體,反而由胚胎是否被細菌感染來控制。

最後,還有一種隨機的性別決定方式。有些寄生的甲殼類動物,他們竟然是用先後順序來決定性別。跑得比較快、先到達宿主的幼蟲,長得比較大,會發育成雌性;若腳程慢、更晚到達宿主的幼蟲,長得比較小,則發育成雄性。另外呢,有一種綠海洋蠕蟲更加隨興,就只看幼蟲掉在哪裡,如果直接掉在海底就發育成雌性,要是掉在雌性身體上則變成雄性,完全由命運隨機做主!

從動物的性別決定方式,不僅能看到不同的生殖策略,同時也影響了一個族群的性別比例。性染色體決定了哺乳類與鳥類胚胎的雌雄,爬行類動物的性別則由環境決定。這些性別決定模式,會影響一個族群的雌雄比例,也因此並非每一種動物都像人類一樣,男女比例大約是1:1,當雄性比較多或雌性比較多的時候,動物的生殖策略就會產生不一樣的應對變化。

《動物好好玩》收錄於 Apple PodcastSpotify 中的《知識好好玩》系列,歡迎關注追蹤,收聽更多精彩內容。

Mirror Voice_96
2 篇文章 ・ 1 位粉絲
鏡好聽長期經營「知識好好玩」Podcast,找來各領域的專家、教授,分享包含動物、哲學、犯罪心理學、物理等知識。