0

1
0

文字

分享

0
1
0

玻璃天花板在哪裡?從一戰後口述歷史,看女性科學家的困境與突破(上)

何如
・2020/01/09 ・3433字 ・閱讀時間約 7 分鐘 ・SR值 564 ・九年級

作者 / 莎莉.霍羅克斯 (Sally Horrocks)

本文編譯自 Nature 的文章《The women who cracked science’s glass ceiling》,作者為一名科學史學家,從 2011 年起便成為英國科學口述歷史計畫的資深顧問,負責收集從 1940 年代起的英國科學家們的生平與職涯故事。

透過這些口述歷史,作者爬梳了英國女性科學家們的職業生涯,以及戰爭歷程、時代演變下的處境。本文期望展現際遇不同女科學家們如何為事業、科學、與社會奉獻,搏得今天的位置,以及往後需要面臨的挑戰。

圖/Pixabay

結婚了就該離職,連餐廳都只有男性限定

一戰期間,從科學到軍隊的大洗牌,為當時的科學家帶來了大量的工作機會;這樣的狀況一直持續到戰後,尤其在工程領域更加顯著,像是生化學家凱瑟琳.庫爾漢.拉斯伯里 (Kathleen Culhane Lathbury) 便因此而受益。1920-1930 年代初期,拉斯伯里在英國的一間製藥公司 British Drug Houses 工作,負責監管胰島素的製造。

但因為公司餐廳僅限男性,所以在用餐時發生的所有社交活動她都被排除在外。另一位與拉斯伯里同在化學領域工作的女性的筆記上就提到:

男性通常畢業後一開始就會被給予有相當尊嚴及份量的職位,但在大學時期和他同樣努力的女性卻很難獲得這樣的機會,還會被持續的貶低⋯⋯就算客觀上她的工作表現已經令人滿意,但她還是會因為階級差異,而被認為應該獲得比男性夥伴來得低的成果。

1922 年,拉斯伯里從倫敦皇家霍洛威學院1畢業,她在申請工作時署名「克‧庫爾漢 (K. Culhane)」來隱藏她的性別,並且無償的為皇家化學研究所 (Royal Institute of Chemistry) 工作。對於在化學領域工作的女性而言,身體健康跟厚臉皮比知識背景來得重要。

-----廣告,請繼續往下閱讀-----
晶體學學者凱瑟琳.庫爾漢.拉斯伯里是首先入選為英國皇家學會成員的兩位女性之一。圖/Gettyimages

從她的故事可以知道,縱使戰間期 (inter-war period) 對女性科學家的雇用有所增加,但這些工作環境依舊存在著對女性的排外與隔離。而女性與男性在職業模式上的龐大差距,更是一直延續到二戰乃至冷戰初期。

在那個年代,女性普遍受限於「一旦結婚就會辭職」的預想當中。除了少數例外,就連文職人員也會因為結婚而被要求離職,所以想要工作得較久的女性都會保持單身。倘若有女性的工作表現對國家有足夠的重要性,那麼她便能免於受到結婚即離職的限制——但實際上,很少有人能得到這樣的豁免權。

圖/Pixabay

航空工程學家法蘭西斯.布拉德菲爾德 (Frances Bradfield) 便是少數的例外。布拉德菲爾德自 1918 年便加入皇家航空研究院 (Royal Aircraft Establishment, RAE),主要負責飛行器的風洞項目,她不僅指導了許多年輕的男性同事,也獲得了大家的尊重,並直到 1955 年才正式退休。

然而與她同年加入 RAE 的穆里爾.巴克 (Muriel Barker),與布拉德菲爾德皆畢業自劍橋大學紐納姆學院2,際遇卻全然不同,她在 1922 年嫁給同事後不久便離職。

-----廣告,請繼續往下閱讀-----

另外,同樣在 RAE 工作的航空引擎專家碧翠絲.席林 (Beatrice Shilling),也是少數免於婚後離職的女性,1938 年結婚的她一直工作到 1969 年才退休離開。席林在早期的戰鬥機型「噴火」(Spitfire) 與「颶風」(Hurricane)中開發了能夠避免引擎停機的裝置,對於 1940 年的不列顛空戰3具有相當重大的貢獻。

1940 年代,碧翠絲.席林研發了能夠防止飛行器引擎突然停機的裝置。圖/Fred Macarry, Flickr, CC BY-ND 2.0

境遇大相逕庭的女科學家們

1945 年,X繞射晶體學學家凱瑟琳.朗斯戴爾(原姓亞德利)(Kathleen Lonsdale (née Yardley)) 與生化學家瑪喬麗.斯蒂芬森 (Marjory Stephenson) 率先入選為英國皇家學會 (Royal Society) 的兩名女性成員。長年就職於醫學研究委員會4的斯蒂芬森更是在 1943 第一次受聘為大學講師。

而朗斯戴爾則是在研究時曾受過諾貝爾物理獎得主威廉.亨利.布拉格 (William Henry Bragg) 的支持,自1929 年成家後她便開始在家裡工作,而她的丈夫則承擔起了家務。

然而,並不是所有人都這麼幸運。因為政府提供公費以鼓勵在學生就讀工程學來重建戰後的英國,貝里爾.普拉特 (Beryl Platt) 在就讀劍橋大學格頓學院5前將主修轉為機械工程6,並於 1943 年加入霍克飛機公司 (Hawker Aircraft Company),但在戰後不久7她便與紡織商人結婚,結束了她在工程領域短短的職業生涯。

-----廣告,請繼續往下閱讀-----
工程師貝里爾.普拉特(左)與同事在他的婚禮上。圖/Gettyimages

跟同樣為科學家的伴侶結婚的女性科學家,尤其是那些任職於大學裡的,有時候能夠延續她們的研究工作。

好比 1908 年獲得碩士學位的有機化學家格特魯德.羅賓森 (Gertrude Robinson),結婚8前便在曼徹斯特大學9擔任哈伊姆.魏茨曼 (Chaim Weizmann)10的研究助理。婚後她更與丈夫合作有關於有機化學領域的研究,甚至發表了超過三十篇論文。

當時,因為有愈來愈多英語系國家的大學會聘請來自英國的研究學者和工作人員,她和丈夫便也因此曾在澳洲雪梨大學11短暫工作過。

從 19 世紀開始,科學相關的工作開始會像羅賓森夫婦這樣,具有在國際間移動的特質,但依舊是男性較女性更為有利。1887 年至 1943 年間加入皇家化學研究所的英國化學家中,便有超過 16% 的職業生涯在海外度過。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

準備二戰需要科學家,但……

1939 年,全世界都在緊鑼密鼓地籌備第二次世界大戰,英國開始將科學家視為國家的財產,並建立相關制度12以利招募培訓科學家與工程師,例如讓能修習物理或工程領域課程13的男性在完成學位後,可以獲得兵役豁免。儘管國家如此需要這些專家學者,卻並不鼓勵大學增加科學與工程領域女性學生的比例。

彼時不論男女在完成學業後都要直接進入備戰工作,有些甚至更早便參與到其中。例如微生物學家娜達.詹尼特(原姓菲利普斯)(Nada Jennett (née Phillips)) 跟其他同學14便在休假時研究青黴素 (Penicillin)15製造的問題。

在戰爭之後,詹尼特被培訓成為一名教師,並一直在大學實驗室和醫院裡工作直到她第一個小孩出生。在回到微生物領域以前,詹尼特還兼職教自然課,而後還發展了園藝設計的第二事業。

對於男性而言,戰時的工作往往會是人生的轉捩點,成為未來長久成功的事業基礎;然而對女性來說,卻普遍只是在負擔起全職家務前的小插曲罷了,爾後迎來的工作多半是一些無薪的志願工作或是兼職雇用,很少會有持續而長久的職位。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

但至少有些原先不太願意錄用女性的雇主在這段時間漸漸開始鬆綁,像是帝國化學工業16就是其中之一。他們的應徵廣告明確表示了優先錄取「英國籍的女化學家」。但像這樣的國籍限制或許也解釋了為什麼流亡的女性科學家不一定能夠找到與她專業領域相關的工作,就算她們再有能力也一樣

舉例來說,1941 年三月,《Chemistry and Industry》便刊登了這麼一則廣告:

「流亡自德國的女化學家 (LADY CHEMIST),37 歲,具有柏林的博士學位,正在尋求一個職位。有橡膠化學相關的研究經驗,習慣於翻閱搜查資料,並能將德文翻譯成法文。」

就已婚女性而言,原先因為有了小孩、要專注於家務而離開科學事業,就算此時想要為戰爭做出一點貢獻也很難找到合適的工作。像拉斯伯里就是一個例子,在短暫的做一些管理發放薪資的人事工作 (wages clerk) 後,她最後也只能在皇家兵工廠 (Royal Ordnance Factory) 負責統計上的品管控制。

在下一篇文章中,我們將繼續看到,女性科學家在 20 世紀中葉以後的機會擴展。在近現代的五十年內,人們是如何逐步消除就業上的障礙,建立職業上的平等態度。而法律和制度上的改變,又為我們今天奠定下怎麼樣的基礎呢?

註解:

  1. 倫敦皇家霍洛威學院 Royal Holloway, University of London。
  2. 劍橋大學紐納姆學院 (Newnham College, Cambridge),女子學院,於 1871 年建立
  3. 不列顛空戰 Battle of Britain
  4. 醫學研究委員會 Medical Research Council
  5. 劍橋大學格頓學院 Girton College, Cambridge
  6. 普拉特原先主修的是數學。而在當時,機械工程學生的男女比是 250 : 5。
  7. 她曾短暫的為英國歐洲航空 (British European Airways) 工作,主要是負責航空安全。
  8. 有機化學家格特魯德.羅賓森 1912 年與跟後來的諾貝爾獎得主羅伯特.羅賓森 (Robert Robinson) 結婚。
  9. 曼徹斯特大學 University of Manchester。
  10. 哈伊姆.魏茨曼,在 1949 年成為以色列的第一位總統。
  11. 澳洲雪梨大學University of Sydney, Australia
  12. 根據勞動部 (Ministry of Labour) 與「國民服役」法案 (National Service)。
  13. 這些課程從三年被壓縮成兩年,即便是需要至少四年才能拿到榮譽學位的蘇格蘭也不例外。
  14. 布里斯托爾大學 (University of Bristol)
  15. 他們會到葛蘭素製藥公司 (pharmaceutical company Glaxo) 進行研究。
  16. 帝國化學工業 Imperial Chemical Industries,簡稱ICI,後來成為了英國最大的化學製造商。
文章難易度
何如
12 篇文章 ・ 1 位粉絲
「因為人因思想而獨特,但不說出來就什麼都不是。」 —為自己的冗言話多辯解的小菜鳥。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(1)
顯微觀點_96
・2024/07/24 ・1683字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

顯微鏡學的蓬勃發展,不僅促進了醫學﹑公共衛生的發展,而在這背後也有許多偉大的女性科學家參與其中。

屏東縣九如鄉一處養羊場有 3 頭羊確診「布氏桿菌病」,為台灣約 30 年來首例,動防所已撲殺感染羊隻並進行消毒。由於「布氏桿菌」為人畜共通傳染病,衛福部疾病管制署匡列 4 名牧場員工…。2023 年 12 月 9 日報導

由於乳製品滅菌的觀念普及,現在已很少聽聞布氏桿菌感染。這都得歸功於首先發現經由飲用感染布氏桿菌的生牛乳而導致人類得馬爾他熱,進而促成乳品全面巴氏消毒的細菌學家艾莉絲.埃凡斯(Alice Catherine Evans)。

Alice C Evans。圖片來源:PICRYL public domain

從偏鄉教師到微生物學家

埃凡斯的祖父 1831 年從英國威爾斯移民至美國,她於 1881 年 1 月 29 日出生在美國賓州尼斯威爾斯社區的一戶農家。

-----廣告,請繼續往下閱讀-----

埃凡斯在出生地念中小學,因當地沒有高中,她到了賓州托旺達(Towanda)的薩斯奎漢納學院(Susquehenna)就讀。1901 年畢業後,進入大學就讀的夢想因家裡無法負擔而破碎,且當時小學教職幾乎是唯一對女性開放的非基層勞力職業,因此她沒有多想就進入一所小學擔任 1 至 4 年級的教師。

她在家鄉和外地的小學共教了 4 年書後,得知有康乃爾大學農學院提供偏鄉教師免學費的自然科學課程。當時康乃爾大學的農學院院長貝利(Liberty Hyde Bailey)希望藉由受過訓練的教師,培養學生對大自然的熱愛、對植物和動物以及無生命世界的興趣。

埃凡斯申請了這項計畫,並用她四年教書的積蓄來到康乃爾大學,並選擇細菌學作為研究領域,指導教授是研究乳製品的微生物學家史托金(William A. Stocking)。

1908 年她獲得康乃爾大學農學院的學士學位,經指導教授推薦,獲得威斯康辛大學的獎學金;這是專門提供給專攻農化或細菌學研究的獎學金,且在此之前未曾頒給女性。於是埃凡斯前往威斯康辛大學繼續碩士學業。

-----廣告,請繼續往下閱讀-----

但她雖然是拿細菌學獎學金,但在農業細菌學指導教授黑斯廷斯(Edwin George Hastings)的要求下,埃凡斯花了三分之二的時間研讀化學,並於 1910 年獲得碩士學位。 碩士學業最後一年,教授希望埃凡斯留下來繼續攻讀博士學位。雖然意識到這是不錯的機會,但大學和碩士學業已帶給她不小的經濟和精神負擔,加上博士學位在當時對科學家並非必要,因此她選擇不再繼續攻讀。

與布氏桿菌相遇

每個人都有自己的天職,天賦就是呼喚,有一個方向,所有的空間都向他敞開。他擁有靜靜地吸引不斷往前努力的能力。

——愛默生

幸運的是,埃凡斯獲得了農業部動物產業局(Bureau of Animal Industry)的研究職位。由於乳酪是威斯康辛州的重要產業,當時威斯康辛大學化學系和細菌學系與乳製品部門合作,研究更好的乳酪製作方法。

埃凡斯是該單位首位女性員工。當時的動物產業局官員沒有想到可能會選擇女性。據傳聞,官員們在一次會議中聽到一名女科學家將加入他們的工作行列的「壞消息」時,他們充滿了驚愕,甚至「差點從椅子上跌下來」。

埃凡斯的回憶錄寫到:「就我而言,進入動物產業局純屬意外,因為長官在女性就業屏障上留下了一個漏洞,我不知不覺地就鑽了進去。」但這在女性就業可說是一個重要的里程碑,因為除非對美國公務員提出嚴重的投訴,否則埃凡斯不會被任意解僱。

-----廣告,請繼續往下閱讀-----

所幸埃凡斯的頂頭上司,乳製品部長羅爾(B. H. Rawl)與研究主任羅傑斯(Lore A. Rogers),都不認同其他高級官員對女性的敵意。她在此研究主題是牛乳中各式各樣的細菌,並了解這些類型細菌的來源。同時,她也每年在大學選修一門課,以充實知識。

研究過程中,她的目光漸漸集中到一個特定的對象,一種致流產的傳染性微生物。

查看原始文章

討論功能關閉中。

顯微觀點_96
10 篇文章 ・ 3 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
0

文字

分享

0
2
0
展頻技術之母海蒂.拉瑪(Hedy Lamarr)
數感實驗室_96
・2024/06/08 ・768字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

被美貌耽誤才能的代表,這句話或許再適合不過地形容我們今天的主角——海蒂.拉瑪。她是一位好萊塢女明星,但她的成就絕不僅限於螢光幕前的光鮮亮麗。

好萊塢巨星與發明家雙重身份

海蒂.拉瑪不僅在影壇上熠熠生輝,她還是「展頻」這項重要通信技術的發明人。這項技術如今在無線通訊中廣泛應用,像藍牙和 Wi-Fi 等技術的基礎都能追溯到這項發明。

她的一生充滿了傳奇色彩,不僅僅是一位銀幕女神,還是一位傑出的發明家,她的貢獻至今仍影響著我們的日常生活。讓我們一起走進這位才能與美貌並存的女性,了解海蒂.拉瑪(Hedy Lamarr)如何在那個年代突破重重障礙,成為展頻技術的奠基者。

-----廣告,請繼續往下閱讀-----

如今,我們所使用的藍牙、Wi-Fi 等傳輸技術,其中部分原理來自於海蒂.拉瑪與喬治.安塞爾的跳頻展頻技術。儘管為了提升效率和安全性,現代已經有了更多展頻方式,但這並不會抹去拉瑪與安塞爾的巨大貢獻。

海蒂.拉瑪一生在影壇輝煌,雖然未曾獲得奧斯卡獎,但卻得到由「電子前哨基金會」頒發,有發明界奧斯卡獎之稱的「先鋒獎」,拉瑪離世後 14 年,入選美國國家發明名人堂,肯定她在展頻技術上的突破。或許大家記得她螢光幕前的風采,那如同她在好萊塢星光大道上的那顆星一樣閃耀的身影。但我希望每當我們享受便利的通訊科技時,能記得她也是這條技術發展長路上的一位重要火炬手。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/