Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

發現海王星│ 科學史上的今天:9/23

張瑞棋_96
・2015/09/23 ・880字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

1846 年 9 月 23 日夜晚,夜空清澈,繁星若塵。萬籟寂靜之際,柏林天文台的圓頂驀然爆出一句:「星圖上沒有那顆星!」那是天文學家加勒 (Johann G. Galle) 的助理所發出的驚呼,因為他仔細比對了星圖後,確定上面沒有加勒看到的那顆星星。沒想到觀測不到半小時,他們果真就在法國數學家勒威耶 (Urbain Le Verrier) 所預測的位置附近找到一顆新的行星;也就是太陽系的第八個行星,海王星。

勒威耶之所以會相信海王星存在,並計算它可能的位置,乃因天王星的實際運行軌道與理論所預測的不大相符,而最合理的推測就是天王星受到一顆未知行星的引力拉扯所致。他於 1846 年 8 月底在法國科學院宣讀論文,隨後寄信告知加勒。

海王星成為八大行星中,唯一事先經由天體力學計算,預言其存在並預測其位置,才被發現的行星。以科學而言,這是一大勝利,再次展現了自然現象用簡單的物理定律就能掌握。然而,一旦牽涉到「誰是第一人」的問題,就沒那麼簡單了。

英國方面隨即舉證歷歷,宣稱他們的年輕數學家亞當斯 (John C. Adams) 更早就計算出海王星的位置,只是收到他信件的天文學家未予重視才被埋沒。英法雙方爭執多年後,折衷的結論就是讓亞當斯與勒威耶並列為共同的發現者。然而,一份遺失多年的歷史文件在 1998 年現身,證明英國同胞給予亞當斯的讚譽言過其實,他不應分享勒威耶的殊榮。

-----廣告,請繼續往下閱讀-----

當然世間這些紛紛擾擾完全於天體無礙,海王星兀自以 165 年的漫長公轉周期在邊緣孤獨地運行(自它首度被發現到現在,也才剛繞完太陽一圈沒多久哪!),只在 1989 年時,航海家二號 (Voyager 2) 從它身旁匆匆掠過,攝下它靛藍中略帶白色紋路的美麗身影。但那隱藏在宛如湧著白色浪花的平靜海洋底下的,其實是酷寒低於 -200°C、風速超過音速的狂暴氣流。

2014 年 8 月,另一艘太空船新視界號 (New Horizons) 在相隔 25 年後再次穿越海王星軌道,但這次任務只為探索冥王星及古柏帶,所以未見海王星身影即一路遠去,就這麼永遠告別這顆太陽系中最遙遠、最寒冷的行星……。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

5

71
2

文字

分享

5
71
2
穿越兩百億公里的家書,航海家二號妳收到了嗎?
陳子翔_96
・2020/12/21 ・2312字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

距離我們大約兩百億公里的太空中,有一架名為航海家二號的探測器已經工作了數十年,就在不久前,NASA 送出了久違的訊息試圖再次與她連絡上……

為什麼說久違呢?是這樣的,今年初因為位在澳洲坎培拉,負責聯繫航海家二號的訊號收發站要進行天線設備升級,然而這又是目前唯一能和航海家二號聯繫上的訊號收發站,也因此必須暫停與航海家二號的聯繫。

負責聯繫航海家二號的訊號收發站——CDSCC。圖/Wikipedia

43 年從未斷訊的航海家二號

雖然說這次與航海家二號數個月的斷訊是計畫之中的事情,但其實還是讓 NASA 的工程師與科學家們有些緊張。各位可以回想看看,自己用過壽命最長的電子產品或家電用品是什麼呢?也許你會想到用了五年的手機,十年的電視機,又或是用了二、三十年的電鍋或冰箱。但相信應該很少人家裡有超過四十年,而且完全沒有維修過卻還能使用的電器吧。然而航海家二號從發射至今已經獨自在廣大的太空中運作超過 43 年了,在她離開地球時,台灣第一條高速公路與電氣化鐵路都還在建設中呢!也因此要與一架骨董級探測器斷訊八個月的確滿讓人擔心的。

不過話說現在科技已經進步非常多,近年也不乏許多先進的新探測器持續進入太空探索,為什麼我們仍這麼關心航海家二號的動向呢?其中有個很大的原因是,即便新的探測器有著更先進的儀器設備,航海家二號帶來的貢獻和歷史意義仍然難以被超越。

-----廣告,請繼續往下閱讀-----

就讓我們藉由著個機會來重溫這架傳奇探測器光輝的故事吧!

航海家二號的誕生:太空「大航海時代」的序章

在太空探索的歷史上,1960 年代是載人太空任務發展的黃金年代,第一位進入到太空的人與第一位踏上月球的人都是在 1960 年代發生的。而 1970 年代,就可說是探索太陽系的「大航海時代」了,在這十年間,許多無人探測器先後出發探訪太陽系的各大家族成員,像是首次登陸火星、首次飛掠各大行星的成就都在這幾年間達成,而航海家二號可說是其中最具代表性的探測器之一。

1973 先鋒十號史上首批飛掠木星旁拍攝的照片。圖/NASA
1976 年維京 1 號探測器 史上首批火星表面的照片。圖/Wikipedia

揭開太陽系外圍的神秘面紗,乘載希望奔向宇宙深處

有別於先前多數的太空探測器都是以一顆特定星球作為目標,航海家二號最特別之處,就在於她造訪了所有外太陽系的氣體行星—木星、土星、天王星和海王星。而要完成這樣的壯舉必須仰賴這四顆行星特殊的排列位置,讓探測器在每在造訪一顆行星的同時,也正好能巧妙地讓該行星的重力拉自己一把,幫助探測器用最節省燃料的方式飛向下一顆行星,而這樣的機會每隔 176 年才會有一次呢!

航海家二號的飛行路線,由內而外造訪四顆氣體行星。圖/Wikipedia

把握住這樣的機會,航海家二號在 1977 年八月升空,並在接下來的十年先後收集了四顆氣體行星的重要科學資料,同時也傳回了許多令人屏息的經典照片。更特別的是,在四十多年後的今天,航海家二號仍然是唯一造訪過天王星和海王星的探測器,因此下次看到像是下圖這樣清晰漂亮的天王星和海王星影像,就可以跟朋友說這個照片是航海家二號拍攝的,也許朋友就會以崇拜的眼光看你(並不會)

-----廣告,請繼續往下閱讀-----
航海家二號所拍攝的天王星海王星。圖/NASA

1989 年航海家二號飛掠了最後一個計劃中的目標天體—海王星,然而她的任務卻還會持續下去,繼續為我們帶來外太陽系,甚至是「太陽系外」的第一手資訊,例如太陽磁層頂的位置、星際空間的磁場與宇宙射線強度等等……

同時,航海家二號也帶著地球人想送給外星人的「小禮物」,一張收錄用全球各種語言打招呼的錄音,以及數張影像檔案的唱片和唱片播放器。雖然說要在茫茫宇宙中「不小心撿到」這個禮物的機率實在太低,但這樣的紀念品某種程度也象徵著人類踏出航向宇宙的步伐時,做出的浪漫宣示吧!

航海家二號的金唱片與背景中的航海家二號。圖/NASA

重新連繫航海家二號

今年十月天線更新完成後,NASA 終於能送出睽違八個月,一封「來自地球的家書」給航海家二號,而她也順利收到並有所反應,彷彿對地球上的我們說:「哈囉地球上各位,好久沒有各位的消息了,很高興又收到你們的信,我在遙遠的太陽系外也都還好喔!」

這次成功的聯繫也代表著航海家二號的任務依然持續進行著,不過 NASA 的工程師也估計探測器的電力應該所剩不多了,我們終究在未來的某一天必須和這部偉大的探測器告別,但航海家二號仍將繼續帶著人們探索未知世界的精神,航向星空深處。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 5

0

2
1

文字

分享

0
2
1
重力理論的演進與環繞黑洞的恆星
科學大抖宅_96
・2020/05/26 ・2647字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

十七世紀末,牛頓提出的萬有引力理論象徵現代天體力學的開始;人們利用物理原理來描述天體運行,並藉由天文觀測逐步修正理論或計算方法的缺失。以天王星的發現為契機,科學家開啟了一連串對行星軌道的研究;這些事件不但成為天體力學發展史的重要標誌,最終竟促成重力理論的演進,甚至延續到現今,反應在我們對黑洞的觀察上。

這一切,都要從 1781 年,英國天文學家赫雪爾(William Herschel,1738-1822)在自家庭院,從望遠鏡中看到一顆彗星說起……

天王星的詭異行徑

在赫雪爾將發現回報給皇家學會後,其他科學家也紛紛對這顆彗星進行調查。很顯然的,它似乎沒有彗星尾巴,而且運行軌跡較接近圓形,不像其他彗星以非常扁的橢圓軌道繞行太陽;與其說是彗星,它更像是在土星軌道之外環繞太陽的行星──這就是天王星的發現。

儘管已驗明正身,天王星仍然困惑著接下來數十年的天文學者:它的實際軌道和牛頓萬有引力理論的預測並不相同。這是牛頓理論的失敗嗎?還是觀測錯誤了呢?1846 年,法國天文學家勒維耶(Urbain Le Verrier,1811-1877)利用數學計算提出預測:存在某個未知星體影響了天王星的運行,造成理論和觀測的差異;他也指出該星體的軌道、質量和位置大約為何。

-----廣告,請繼續往下閱讀-----

一陣子之後,柏林天文台收到勒維耶的報告,便馬上著手進行未知星體的搜尋工作;只花不到一個小時,海王星就被找到,與勒維耶預測的位置相差不到一度──史上第一次,單純憑藉數學計算發現新行星[1]

奧本‧勒維耶(圖片來源

水星的運行軌道也存在異常

隨著海王星的發現,牛頓萬有引力理論可說獲得空前勝利。然而,天文學家拿重力理論來推估行星運行的嘗試並未到此為止。1859年,勒維耶再度出擊,聲明水星軌道的進動也跟牛頓萬有引力理論的計算有所出入。

在理想狀況下,依據牛頓萬有引力理論,水星環繞太陽的運行軌道應該要固定不變;然而在實際上,因為受到其他行星的重力拉扯(和另外一些次要因素),水星軌道的近日點(以及軌道本身)會緩慢產生變化──這稱為水星的近日點進動。

-----廣告,請繼續往下閱讀-----

不止水星,其他行星也都會有進動;只是水星距離太陽最近,進動效應最明顯。圖為地球繞行太陽的軌道進動示意;進動效應被刻意放大。(圖片來源

勒維耶分析了從 1697 年到 1848 年的水星觀測資料,發現水星的近日點進動,與用牛頓萬有引力理論考慮其他行星的影響所算出來的進動數值,每世紀差了三千六百分之三十八(38/3600)度[2]──這是多麼微小的數值,卻又真實存在!

因為之前海王星的成功經驗,勒維耶猜想:介於太陽和水星軌道之間,可能存在未曾發現過的星體,影響了水星的運行;他將其命名為瓦肯星(Vulcan)[3]

無奈地,這一次任憑天文學家花費幾十年尋找,甚至勒維耶也已去世良久,瓦肯星始終不見蹤影;而水星近日點進動問題便懸而未決,延續到二十世紀。在 1915 年,愛因斯坦才利用廣義相對論成功將此問題劃上句點。

-----廣告,請繼續往下閱讀-----

愛因斯坦在1915年的論文中,運用廣義相對論解決了水星的近日點進動問題。(圖片來源

根據我們目前所知,水星的近日點每世紀會移動約 574/3600 度,其中牛頓萬有引力效應佔了 532/3600 度,而廣義相對論造成的效應幾乎剛好就是兩者之差。廣義相對論針對牛頓萬有引力定律所描述的重力,做出了細緻的修正──這個修正在大多數狀況下,微小到可以忽略;只有在水星近日點進動這樣的例子,差異才會顯現出來。可以說,水星近日點進動問題的解決,是幫助廣義相對論得到世人認可的重要原因之一。

廣義相對論的黑洞測試

科學家拿星體運行來測試重力理論的故事就到此為止了嗎?非也。既然原本得到廣泛驗證的牛頓萬有引力定律,因水星近日點進動現象而被找到缺陷,那麼現在大獲全勝的廣義相對論,自然也有可能在某種特殊環境下暴露弱點──科學家於是把腦筋動到了黑洞頭上。

黑洞堪稱宇宙裡數一數二極端的天體,龐大的重力吞噬一切,無疑是測試重力理論的理想選擇。就像水星繞行太陽會產生進動,是否,繞行黑洞的星體,其軌道也會有進動現象呢?又是否完全可以用廣義相對論來解釋?

-----廣告,請繼續往下閱讀-----

針對廣義相對論的正確性問題,一群科學家團隊花了二十七年,觀測環繞無線電波源人馬座A*(Sagittarius A*)運行的恆星S2,並於今年(2020)四月,在《Astronomy & Astrophysics》期刊發表最新成果

人馬座A*位於銀河系中心,距離地球約兩萬六千光年,質量估計為四百多萬倍太陽質量,據信極可能是超大質量黑洞;環繞於外的 S2 具有十多倍太陽質量,與人馬座A*的最近距離是十七光時(海王星到太陽距離的四倍),軌道週期為 16 年(海王星軌道週期是 165 年)。研究發現,S2近心點(pericenter,最靠近重力中心的點)的進動約為每軌道週期 12/60 度,與廣義相對論的預測相符──即使在重力如此強大的環境,廣義相對論依舊通過試煉。

藝術家描繪的S2繞行人馬座A*示意圖;為了清楚顯現 S2 軌道因為進動而逐漸改變位置,進動效應被特意放大。(ESO/L. Calçada

本次研究的意義

儘管沒有發現廣義相對論的破口,這次的成果仍然別具意義:它是人類第一次確認以黑洞為中心的進動現象;再者,若人馬座A*附近存在某些看不見的物質(如暗物質,或其他小型黑洞等等),科學家也能依據數據給出嚴格的質量上限。可以肯定的是,隨著觀測技術的發展,我們對於宇宙、或者黑洞的理解,將持續進步;說不定哪天,還真能發現廣義相對論的問題呢。

-----廣告,請繼續往下閱讀-----

註釋

  • [1] 實際上,勒維耶計算出的海王星軌道,與真正的海王星軌道仍有一些差距。但這並無礙於發現海王星的偉大成就。
  • [2] 多年後,其他科學家重新評估牛頓萬有引力理論和實際觀測的差距,得出每世紀三千六百分之四十三(43/3600)度的數值,跟現代觀測吻合。
  • [3] 就跟《星際爭霸戰》(Star Trek)裡的瓦肯星同名。不過可以確定勒維耶並不是因為看了《星際爭霸戰》才這麼命名的。
-----廣告,請繼續往下閱讀-----
科學大抖宅_96
36 篇文章 ・ 1873 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

0
0

文字

分享

0
0
0
發現海王星│ 科學史上的今天:9/23
張瑞棋_96
・2015/09/23 ・880字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

1846 年 9 月 23 日夜晚,夜空清澈,繁星若塵。萬籟寂靜之際,柏林天文台的圓頂驀然爆出一句:「星圖上沒有那顆星!」那是天文學家加勒 (Johann G. Galle) 的助理所發出的驚呼,因為他仔細比對了星圖後,確定上面沒有加勒看到的那顆星星。沒想到觀測不到半小時,他們果真就在法國數學家勒威耶 (Urbain Le Verrier) 所預測的位置附近找到一顆新的行星;也就是太陽系的第八個行星,海王星。

勒威耶之所以會相信海王星存在,並計算它可能的位置,乃因天王星的實際運行軌道與理論所預測的不大相符,而最合理的推測就是天王星受到一顆未知行星的引力拉扯所致。他於 1846 年 8 月底在法國科學院宣讀論文,隨後寄信告知加勒。

海王星成為八大行星中,唯一事先經由天體力學計算,預言其存在並預測其位置,才被發現的行星。以科學而言,這是一大勝利,再次展現了自然現象用簡單的物理定律就能掌握。然而,一旦牽涉到「誰是第一人」的問題,就沒那麼簡單了。

英國方面隨即舉證歷歷,宣稱他們的年輕數學家亞當斯 (John C. Adams) 更早就計算出海王星的位置,只是收到他信件的天文學家未予重視才被埋沒。英法雙方爭執多年後,折衷的結論就是讓亞當斯與勒威耶並列為共同的發現者。然而,一份遺失多年的歷史文件在 1998 年現身,證明英國同胞給予亞當斯的讚譽言過其實,他不應分享勒威耶的殊榮。

-----廣告,請繼續往下閱讀-----

當然世間這些紛紛擾擾完全於天體無礙,海王星兀自以 165 年的漫長公轉周期在邊緣孤獨地運行(自它首度被發現到現在,也才剛繞完太陽一圈沒多久哪!),只在 1989 年時,航海家二號 (Voyager 2) 從它身旁匆匆掠過,攝下它靛藍中略帶白色紋路的美麗身影。但那隱藏在宛如湧著白色浪花的平靜海洋底下的,其實是酷寒低於 -200°C、風速超過音速的狂暴氣流。

2014 年 8 月,另一艘太空船新視界號 (New Horizons) 在相隔 25 年後再次穿越海王星軌道,但這次任務只為探索冥王星及古柏帶,所以未見海王星身影即一路遠去,就這麼永遠告別這顆太陽系中最遙遠、最寒冷的行星……。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。