0

2
0

文字

分享

0
2
0

人腦是第三個千禧年的代表圖騰

國科會 國際合作簡訊網
・2012/05/30 ・3335字 ・閱讀時間約 6 分鐘 ・SR值 604 ・九年級

圖片來源:illuminaut@Flickr,根據創用CC-By 2.0條款使用

二十世紀末,造影技術的突飛猛進將人腦推到科學舞台的前方。不過,大腦的探索自古以來便一直令人著迷。

自古希臘時期開始,大腦便被封為思想的器官。希波克拉提斯(Hippocrate,約西元前 460-376 年)是主要的提倡者,他建立以觀察為基礎的醫學,企圖消除各種迷信、譴責巫醫。他的繼承者如希洛菲羅(Hérophile)、埃拉希斯特拉圖 (Érasistrate) 獲准在亞歷山大進行人體解剖,擴大了他的影響力。當基督宗教醫學接受靈魂位於腦室中的假設時,從帕加瑪 (Pergame) 來到羅馬的蓋倫 (Galien,約西元 131-201 年)與他所尊敬的希波克拉提斯一樣,成為醫學界的指標。不過蓋倫以動物解剖為基礎,在濫用普遍化的原則下,錯誤地將觀察結果複製在人類身上。但是他證實大腦是思想的器官,確認構成認知功能受體的是腦中的物質,而非腦室。

直到文藝復興時期才再度恢復解剖行為,特別值得一提的是在義大利,一位來自佛萊蒙地區的年輕教授維薩留斯(André Vésale,1514-1564) 徹底革新人體解剖的方法,並親自操刀,修正許多蓋倫犯下的錯誤。儘管文藝復興時代充滿為人腦研究帶來貢獻的原創觀點,但是宗教裁判所的影響力仍阻礙了新觀點的發展。

電與磁

法國的笛卡兒(Rene Descartes,1596-1690)與英國的威利斯(Thomas Willis,1621-1675)這兩位幾乎同時代的人物,隨後以更為生理病理學 [1] 的原創視角來探討人腦。對不是醫生的笛卡爾而言,哲學主宰了科學。

笛卡兒作為第一個構思出反射概念的人,尤其想分開腦與靈魂的功能,並提出鄰近小腦的「松果體」腺體是靈魂影響身體的中心。威利斯則與笛卡兒相反,他被視為第一位腦部生理學家,試圖了解人腦不同部位的功能與分層組織。他反駁笛可兒認為動物不具有任何感知能力,唯獨人類才擁有此能力的說法。他也是首位致力於觀察神經心理疾病症狀的醫生,並提出心理學的雛形概念。

哈維(William Harvey,1578-1657) 於 1628 年描述了血液循環後,醫學界的主要課題便是了解感官器官如何將訊息傳到腦部、人腦如何透過神經再將訊息傳送到肌肉。過去被認為應該在空心管道中流動的「動物性精神」因而轉變為「神經流」。不過,沒有人能證實蓋倫的學說,他認為神經是空心的,充滿了液體。

此時代的觀念與技術演進,再加上電的發現,為十八世紀的研究工作帶來新的動力。伽凡尼(Luigi Galvani,1739-1798) 在波隆那進行了二十年的研究後,於 1791 年提出一項假設,認為大腦製造的神經電流會導到神經,神經裡的電流由一種絕緣套保存著,儲存在肌肉中。肌肉收縮伴隨著電流釋放的現象。發現此「動物性」電流的同時,維也納人梅斯默(Franz Anton Mesmer,1734-1815) 則提出帶有磁鐵性質的動物磁性概念。他的學說獲得大眾青睞,因為他們寧可被「磁化」,也不想被「電擊」。不過,與動物電相反,動物磁並未對人腦生理學帶來貢獻,只開啟了通往催眠與心理學世界的大門。

十八世紀最後幾十年深受自然主義、人類學家與哲學家的影響。此時,皮內爾(Philippe Pinel,1745-1826)與其監理人普森(Jean-Baptiste Pussin)提出一套更為人性化的精神病學。當時還沒有任何治療精神疾病的藥物,但「瘋子」不會再被鏈住,而是獲得更為尊重的對待方式。德國人高爾(Franz Joseph Gall,1758-1828) 則將神經學家轉變成未來的臨床精神科醫生。這位傑出的解剖家對神經與大腦特別感興趣,企圖將當時的「人相學」(Physiognomonie,從頭顱形式推斷人類行為的學說)轉變為器官學這門新科學。人相學之後變成顱相學(phrénologie),將人類能力與行為歸因於大腦中對稱分佈的心理或智識能力。可惜的是,他從未進行解剖學或生理學的實驗。為了更加理解大腦的功能,必須發明工具來驗證腦中存有電流活動並由神經傳導的新論述。這正是十九世紀實驗醫學與神經生理學發展的任務。

發現神經傳遞物質

蒙特婁的潘菲德(Wilder Penfield,1891-1976)由皮質刺激實驗而獲得的腦地形學(topographiques) 知識與麻醉技術,使十九世紀末出現的神經外科得以發展。神經外科最先用在腦部創傷與腫瘤治療,隨後擴大至腦病理學的眾多領域中,1930 年代則與精神外科一起用於心理疾病的治療上。

二十世紀初期的另外兩項重要主題是突觸 [2] 和神經傳遞 [3]。儘管在伽凡尼之後,人們已經接受電流現象的觀念,但是將神經流由一個細胞傳遞到另一個細胞的突觸,在十九世紀時仍是個謎。二十世紀初的實驗醫學證明自主神經系統 [4] 中的神經可透過流動物質來製造效果,腎上腺素 [5] 和乙醯膽鹼 [6] 已經出現在化學家的試管中,現在只需區分出神經傳遞物質和荷爾蒙 [7] 即可。這項工作分別由戴爾(Henry Dale,1875-1961)和洛威(Otto Loewi,1873-1961)這兩位先驅者進行。

往後幾年,其他神經傳遞物質紛紛被發現,例如多巴胺 [8]。1950年 代由腦中萃取出來的多巴胺,讓研究員首次能將因神經傳遞物質缺陷而造成的疾病如帕金森氏症加以模型化。1961 年出現「多巴胺奇蹟」,幾位臥病在床的帕金森氏症患者在接受多巴胺前驅物 L-Dopa 治療後,再度行走。此後,某些神經傳遞物質分別與功能(運動、記憶)、行為(愉悅、上癮)、症狀(疼痛)或其他疾病(精神分裂)扯上關係,成為神經生物學與精神藥理學之始。

造影的來臨

從 1960 年代起,在化學的幫助下,藥理學開始治療某些心理疾病。經過篩選的分子可用來治療精神疾病,例如抗精神病藥物與抗壓藥物,或者用來治療病理性焦慮,例如鎮靜劑。不僅讓「瘋子」脫離精神病院,也讓他們擺脫污名化。藥理學隨後也用來治療神經疾病,更合理地控制疼痛,並發明新的藥物類型,例如抗癲癇或多發性硬化的藥物。

在許多重要發現中,二十世紀末最重要的是分子生物科技與腦部造影技術的發展。透過這兩項技術,得以即時觀察腦部的運作。某些人相信未來能看到人如何思考,甚至進入人的潛意識;不過這種看法很有可能落入新的顱相學或數學簡化主義中。

這項明顯由模控學者 (cybernéticiens) 提出的論戰,持續了整個二十世紀下半葉,並出現許多交流,例如 1980 年代企圖將人文科學與大腦科學融合為一門新學科的「神經哲學」;Jean-Pierre Changeux 的「神經元」人類 (homme « neuronal ») 則取代了「機械」人類 (homme « machine »)。不過,日前由 Giacomo Rizzolatti 在帕瑪 (Parme) 進行的鏡像神經元(Neurones miroirs)研究和 Alain Berthoz 的行動現象學研究,都顯示大腦始終是十分優良的模擬器。

二十世紀也是基因學的世紀。病理學方面,在三十年間,許多神經退化性疾病如亨丁頓舞蹈症 [9] 證實與染色體有關,帶來許多建立在新基因工程學上的預防方法與治療希望。

勿將奇蹟變成混亂!

今日,將單一傳遞物質連結到一個神經元或認為神經元不會更新的看法已經消失;生長因子的角色、神經元有計畫的死亡(細胞凋亡)、新神經元的形成(神經新生)、新的腦部連結(可塑性)等新觀念則逐漸明確。無論是複製人或是優生學議題,二十一世紀的人類已經作好迎接基因治療、蛋白體基因組學 [10]、新神經組織的移植、產前檢測與奈米藥物 [11] 的準備,不管結果是好是壞。未來,人類的課題將是尊重「神聖」遺產,理由不是其「神授的」本質,而是因為數千年演進所賦予它的「完美」。如果不這麼做,奇蹟就有可能變為混亂。

隨著神經科學的進步,人類的注意力越來越集中在腦部。不過,人類應該將自己的精神界限擴展到周邊無窮的多元性上。隨著集奈米科技、生物科技、資訊科學與認知科學於一身之 NBIC 新科技的發展,人類可能會想要自我再造,摧毀本身圖騰,僭越最基本的禁忌。不過,這種僭越是人類不自覺的強烈衝動之一。因此,這種僭越很有可能具體化,使我們不斷地拒絕脆弱的人性。這正是後代子孫將面臨的道德問題。

關鍵字

[1] 生理病理學 (physiopathologie):研究被疾病破壞的器官或有機體功能。
[2] 突觸 (Synapse):兩個神經元之間的連結區域。
[3] 神經傳遞物質 (Neurotransmetteur):在突觸中釋放的化學物質,以便傳遞兩個神經元之間的神經流。
[4] 自主神經系統 (Système végétatif):由管理主要生理功能(呼吸、循環、消化、複製等等)的交感神經系統和副交感神經系統構成。
[5] 腎上腺素 (Adrénaline):腎上腺分泌的荷爾蒙,會對壓力有所反應。
[6] 乙醯膽鹼 (Acetylcholine):涉及許多周邊神經系統功能(傳遞、神經-肌肉、血管舒張)與中樞神經系統功能(記憶、運動)的神經傳遞物質。
[7] 荷爾蒙 (Hormone):由內分泌腺體(腦下垂體、腎上腺、甲狀腺等等)分泌的流動物質,可控制器官或新陳代謝的功能。
[8] 多巴胺 (Dopamine):在運動與腦部報酬系統等多種功能中,擔任腦神經傳遞物質的兒茶酚胺(catécholamines)類物質。
[9] 亨丁頓舞蹈症 (Chorée de Huntington):一種家族性神經退化性疾病,特點是不正常的動作(舞蹈症)與失智。
[10] 蛋白體基因組學 (Protéogénomique):將基因組技術運用在蛋白質與其功能研究上。
[11] 奈米藥物 (nanomédicaments):能將活性分子帶到單一基因、蛋白質或器官等治療標靶上的奈米尺寸載體。

[下一頁]

文章難易度
國科會 國際合作簡訊網
47 篇文章 ・ 2 位粉絲

0

1
1

文字

分享

0
1
1
瀕死大腦的最後波紋——人生跑馬燈的科學證據?
YTC_96
・2023/08/09 ・2578字 ・閱讀時間約 5 分鐘

最後波紋。圖/imdb.com

JOJO 的奇妙冒險中,西撒.安德里歐.齊貝林臨死前的「最後波紋」代表著生者最後的思念與力量,是讓 JOJO 粉痛哭流涕的名場景。最後的波紋看似只是作者荒木飛呂彦大師的創作,沒想到神經科學家記錄了瀕死的人類大腦的活動,發現死亡的當下出現有節律的高頻波紋。這些波形和做夢、記憶回憶以及冥想期間發生的腦電圖相似,也彷彿說明最後的波紋是真的存在!

此外,據說人在彌留時能瞬間看到過往的種種回憶,就像人生跑馬燈般快速回顧一生。這些在生死間徘迴所產生的不可思議現象一直是科學家們感興趣的議題。究竟心臟停止後的瀕死狀態(near-death experience (NDE))和大腦活動與意識狀態的關係是什麼?大腦在瀕死狀態時發生了什麼?這是否又能解釋人生跑馬燈的現象呢?

神秘的瀕死經驗

根據瀕死經驗科學研究的奠基者,且有瀕死經驗科學研究之父之稱的布魯斯.葛瑞森醫師(Bruce Greyson),瀕死經驗是一個深刻的主觀心理經驗,通常發生在接近死亡的人身上,處於嚴重的身體,或情緒危險的情況下。這種體驗超越個人自我的感覺,是一種神聖或更高原則的結合。包括脫離身體、漂浮的感覺、完全的寧靜、安全、溫暖、絕對溶解的體驗和光的存在。又甚至可能經歷包括痛苦、空虛、毀滅和巨大空虛的感覺[1-3]

瀕死體驗中反復出現的常見元素是看到一條黑暗的隧道,經歷明亮的燈光,寧靜祥和的感覺。該圖為荷蘭畫家耶羅尼米斯·波希 (Hieronymus Bosch) 的Ascent of the Blessed。圖/wikimedia

即時記錄瀕死的人類大腦活動

過去認為心臟停止後大腦是低活動的狀態,直到約 15 年前左右(西元 2009 年),才記錄到死亡前電流激增(end-of-life electrical surges (ELES))的現象。 但這些紀錄僅來自回溯瀕死期間的測量值,並不是即時記錄臨終患者腦電圖[4]

大約 10 年前,密西根大學研究員吉莫波吉金(Jimo Borjigin)和其團隊進行老鼠實驗,發現在心臟停止後的前 30 秒,gamma 振盪與 alpha 和 theta 之間的相位耦合在大腦皮質與心臟,以及大腦前端和後端的連接性有增加的現象。這些神經振盪原本都只存在於清醒的生物上,但在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平[5]。 這也說明了在動物在臨死前可能經歷了特殊的體驗。

第一次在人類大腦進行從瀕死到死亡過渡階段的連續腦電圖記錄,則在去年 2 月發表在「老化神經科學前沿」( Frontiers in Aging Neuroscience)。愛沙尼亞塔爾圖大學的勞爾維森特(Raul Vicente)博士及其同事使用連續腦電圖檢測一名 87 歲的患者癲癇並同時進行治療。雖然很遺憾,最後患者心臟病發作並去世了,但他們測量了死亡前後 900 秒的大腦活動,並調查心臟停止跳動前後 30 秒內發生的情況。結果發現,就在心臟停止的前後,出現了 gamma 振盪、theta 震盪、alpha 震盪以及 beta 神經震盪的變化。這結果就和之前的老鼠實驗相當類似[6]

在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平。 這也說明了在動物在臨死前可能經歷了特殊的體驗。圖/ Pixabay

瀕死之際大腦活動激增能否解釋人生跑馬燈?

雖然以上的研究說明,人在死亡前大腦會產生類似清醒狀態時才有的腦波反應,但這些證據並不足以證明人生跑馬燈的存在。為了證實這個現象的可能性,之前提到進行老鼠實驗的吉莫波吉金(Jimo Borjigin)在人類使用相同的計算工具來分析腦電圖信號,並關注腦電圖功率的時間動態、低頻和高頻振盪之間的局部和遠程相位-振幅耦合,以及所有頻段的功能性和定向大腦皮質連接。簡單來說,就是想要知道瀕死時人類大腦和意識以及認知功能相關的腦區是否產生變化。

他們對四位已陷入昏迷的病人進行紀錄,在死亡前,兩名在前額和中央皮質區出現廣泛的 beta 和 gamma 波增加。這兩名病人隨後出現了顳葉中反復出現的大型 beta 和 gamma 波活動,並涉及到體感皮質(somatosensory cortex, SSC)。高頻 gamma 波的振幅與慢速 beta 波的相位之間的關聯是發生在背外側前額皮質(dorsolateral prefrontal cortex)和體感皮質之間。更值得注意的是,gamma 波激增的位置是在和意識緊密相關,由顳葉-頂葉-枕葉皮層組成的後皮質熱區(posterior cortical hot zone)[7]

一名 24 歲昏迷婦女在移除呼吸器後的的腦電圖變化。
S1:該婦女有呼吸器維持生命,因心臟驟停引起缺氧損傷。
S2: 開始時移除呼吸機,此時出現高頻和高振幅活動。
患者的最後一次心跳發生在右側的 S11 末尾。圖/National Library of Medicine

受限於道德倫理以及醫學技術,科學家們無法直接驗證瀕死大腦產生的腦波狀態是否就是產生瀕死經驗。但至少能確定的是,哺乳動物的大腦可以在瀕死時產生與增強的意識處理相關的神經關聯。

結論

《論語‧先進篇》子曰:「未知生,焉知死?」雖然孔子曾說,活人的事情道理都還不明白,又怎能清楚死亡是怎麼一回事呢?但探討人在生死間徘徊的現象不僅僅是一個科學問題,更代表著意識研究、臨床應用和倫理議題的突破。

透過更精細且長時間的腦電波紀錄追蹤,有許多證據觀察到在人們跨越生死那一瞬間,大腦會試圖做最後的掙扎。人生在世短短數十載,轉眼間便煙消雲散,瀕死的大腦在跨越生與死那鴻溝之前的體驗也是人生謝幕前的最後一次演出。

從瀕死經驗探討人性的電影-別闖陰陽界(Flatliners)。圖/IMDB

參考資料

  1. Greyson, B. (2000). Near-death experiences. In E. Cardeña, S. J. Lynn, & S. Krippner (Eds.), Varieties of anomalous experience: Examining the scientific evidence (pp. 315–352). American Psychological Association.
  2. https://en.wikipedia.org/wiki/Bruce_Greyson
  3. https://en.wikipedia.org/wiki/Near-death_experience
  4. Chawla, L. S., Akst, S., Junker, C., Jacobs, B., and Seneff, M. G. (2009). Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100. doi: 10.1089/jpm.2009.0159
  5. Borjigin, J., Lee, U. C., Liu, T., Pal, D., Huff, S., Klarr, D., et al. (2013). Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl. Acad. Sci. U.S.A. 110, 14432–14437. doi: 10.1073/pnas.1308285110
  6. Vicente R, Rizzuto M, Sarica C, Yamamoto K, Sadr M, Khajuria T, Fatehi M, Moien-Afshari F, Haw CS, Llinas RR, Lozano AM, Neimat JS and Zemmar A (2022) Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front. Aging Neurosci. 14:813531. doi: 10.3389/fnagi.2022.813531
  7. Xu G, Mihaylova T, Li D, Tian F, Farrehi PM, Parent JM, Mashour GA, Wang MM, Borjigin J. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2216268120. doi: 10.1073/pnas.2216268120.
YTC_96
9 篇文章 ・ 14 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

4
2

文字

分享

0
4
2
「基礎科學研究是一種等待意外發現的過程」——專訪神經科學家程淮榮
研之有物│中央研究院_96
・2023/07/21 ・5643字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/歐宇甜
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

認識神經科學家程淮榮

中央研究院「研之有物」專訪院內分子生物研究所所長程淮榮特聘研究員,他認為從事基礎研究,興趣相當重要,他對神經科學的熱愛程度是每天 24 小時!最初他是熱愛解剖學的醫科生,赴哈佛深造期間,他投入了神經拓撲學領域,探索神經元如何連到正確的對應位置。回臺灣中研院之後,繼續研究與大腦記憶相關的「海馬體」。程淮榮團隊近年發現,老鼠年長之後,雖有新生的神經元,但必須排除其他舊軸突方能形成新突觸,原本存在的記憶會被清除與消失。未來,程淮榮將繼續解開成體新生神經元與海馬體的謎團!

中央研究院分子生物研究所的所長程淮榮,大學就讀醫學系,原本想當外科醫師,又意外轉為神經科學家,只要一談起神經科學就眉飛色舞,對神經科學的熱愛完全溢於言表。圖/研之有物

「研之有物」先前已經報導過程淮榮長期研究的軸突導向(Axon guidance)議題,詳細讀者可以參考這篇〈當神經元遇見真愛!突觸形成的奇妙旅程〉,本文要更進一步談談關於程淮榮個人經歷,以及他最近的研究主題。

(編按:以下以問答形式呈現專訪內容,內文皆為受訪者的第一人稱視角)

一開始先請老師談談您的求學歷程吧~

我在雲林縣虎尾鎮出生,高中前往臺北念師大附中的科學實驗班,後來考上臺灣大學醫學系,至今仍然深深覺得一個二十出頭的小伙子能學習有關人類身體的龐大知識,真是一件相當神奇的事。那時我很喜歡大體解剖的課,大三有一天在臺北忠孝東路等公車,摸著手腕上剛剛學到的九條肌腱, 默念著他們如何拉著手上不同的手指頭, 抬頭看到到站公車車門轉動,突然意識到:「唉呀,這跟手掌的肌腱在牽引肌肉活動好像喔,我們的身體不就像是機械裝置嗎?這個領悟對我的影響很大。」

學習醫學讓我有機會徹底了解自己身體的各種生理構造和功能,以及疾病的成因,收穫很大。身邊的朋友或親戚有什麼疾病往往都會來問我。其實,我和中研院之間的緣分在升大五時就結下了,那時我跟同學一起去找錢煦院士,進入生醫所籌備處當暑期實習生,發現做實驗很有趣。大七開始實習後,原本我的目標是去當外科醫生。當外科醫生需要一點天份、手也要巧,我自認手蠻巧,應該很適合。

既然您很喜歡醫學,也想當外科醫生,為何之後會改變志向呢?

當外科醫師其實蠻有成就感,只要刀開一開,可能不久之後,病患就可以活蹦亂跳。我曾去過顯微骨科醫師的實驗室學習顯微手術實驗,所謂骨科的顯微手術可能就是將腳趾頭接到意外斷掉的手指上,所以我覺得很有趣、很想去學。當時老師還囑咐我,做顯微手術之前不能喝咖啡或茶,我不信邪,想說自己的手很穩,不會有問題吧。沒想到在接兔子耳朵的血管時,在顯微鏡下看到兩隻手都一直不停抖動,從此乖乖遵命。

當外科醫生只需要知道怎麼做手術就好,不過,我很希望知道更多,尤其想了解各種疾病的致病機轉, 心想也許人生還能做一點其他的事,於是決定出國去看看。我很感謝父母都支持我自由的發展,沒有勉強我要留下來開業賺錢。

出國深造期間,您在哈佛大學時曾獲得分子生物學大獎,是什麼研究呢?

哈哈,當初申請哈佛大學時,其實我的讀書計畫是想要以學習發育生物學來發展癌症治療的方法,但後來得獎的題目是神經拓撲學(Neuronal topographic mapping),探討神經元如何依照相對位置連接成一個系統。

視覺神經與大腦對應區域的拓撲圖(Topographic map)。圖/Wikipedia(CC BY-SA 4.0)

這門學問歷史非常悠久, 最早是由 17 世紀初的哲學家和科學家笛卡兒(René Descartes所提出。近代比較相關的一個例子, 是在 20 世紀初,有位神經外科醫生叫做懷爾德·潘菲爾德(Wilder Penfield,經過對於病人的仔細研究,他發現身體的感覺系統和運動系統可以在腦部的對應區域畫出來。而且神經越密集、越敏感的部位如手和嘴唇,在腦部占的區域越大。此外,身體各部位的神經連到腦部相對關係必須維持一樣,一點對一點,也就是所謂的拓撲圖(Topographic map),這樣我們才能正確感知外界訊息並且做出正確的運動反應。

但是,神經連結不是一次到位,一個神經元要經過多次轉接到另一個神經元,最後才連到腦部正確位置。例如外界訊息進入眼睛,透過視神經連到腦部,眼睛接收到右邊視野的訊號必須達到大腦左邊的視覺區。 因此了解這些神經元在發育過程中如何連結,如何維持彼此的相對位置,就是神經拓撲學所要研究的範圍。了解神經元連結的過程很重要,例如:眼科醫師能運用視覺和腦部視覺區的拓撲圖,測試病人兩眼的視野是否正常,判斷可能是哪段神經出問題。

如何證明這些神經元在形成拓撲圖的過程當中可以自己找到正確的連結呢?有位美國科學家羅傑・斯佩里(Roger W. Sperry曾經做了一個非常有名的實驗,他將青蛙眼球取出、切斷視神經,再將眼球在眼眶中旋轉 180 度後放回去。不久後青蛙眼球會再生新的視神經連到腦部,但是由於眼球內的視神經元旋轉了 180 度,但是大腦內的神經元並沒有跟著旋轉,所以這一隻青蛙從此看到的世界是上下左右顛倒:昆蟲在右上方,牠卻朝左下方伸出舌頭!

羅傑・斯佩里的青蛙實驗。圖片上半部是一隻正常的青蛙,不同的顏色表示不同的神經元對應關係,由眼睛(圓形)對應到腦部(橢圓形)。圖片下半部是青蛙眼球旋轉 180 度,可以看到視神經再次連結大腦的點位依然不變,造成青蛙視覺上下左右顛倒。圖/研之有物(資料來源/程淮榮)

的確很神奇!神經元數量這麼多,居然都能連到正確位置。

沒錯,所以很多科學家都想知道,神經系統的拓撲圖是怎麼正確連接的?假設我們請 100 個人排隊,每個人都有意識,聽到指令會依序排好。但神經元沒有意識,如果要靠不同基因下指令連接,人體基因才幾萬個,沒辦法負荷。因此,科學家推測神經元的拓撲圖連結是靠少數分子在不同的神經元上形成不同的濃度來調控, 也就是所謂的分子梯度(Molecular gradient),這樣只需少數幾個基因即可。

例如,從眼睛到腦部有成千上萬個神經元需要連接,如果有一種分子在每個生長錐上的濃度不同,從 1、2、3 到 100,與之對應的樹突上的分子濃度也是 1 到 100,假設連接指令是將雙方濃度加起來等於 101,就可以讓生長錐的 100 接到樹突的 1,接下來 99 接到 2,98 接到 3……以此類推,就能讓神經元按正確的對應位置連接。我在哈佛時就是找出這個關鍵分子而獲得北美 Pharmacia 生物技術與科學獎(Pharmacia Biotech & Science Prize for Young Scientists in Molecular Biology)。

您離開哈佛後,接下來仍持續投入神經科學研究嗎?

是的。我先是到美國加州大學舊金山分校和史丹佛大學做博士後研究,接著到美國加州大學戴維斯分校待很長一段時間,做過許多神經科學相關的研究,像神經軸突連結如何形成(Axon guidance)、神經系統的剪枝(Pruning)等。上課時為了讓學生對神經科學產生興趣,常絞盡腦汁思考如何用比喻或故事說明。

近年回到臺灣後,接任中研院分生所的所長,雖然常要處理繁瑣的行政事務,但對我來說,這是不一樣的人生挑戰,也覺得很幸運。因為中研院分子生物研究所是全臺灣最好的,可以跟一群優秀的科學家一同研究討論,是非常難得的經驗!我也重新建立起自己的實驗室,延續在加州大學戴維斯分校進行的海馬體研究。

什麼是海馬體(Hippocampus)呢?它的功能是什麼?

我來介紹一下。神經科學史上曾有一個著名病人叫做亨利・莫雷森(Henry Molaison,生前為了保護隱私稱為 H.M.)。由於他年輕時會發作嚴重的癲癇,醫師認為可能是海馬體異常放電而引起,因此將他兩側的海馬體都切除,結果發現他的記憶從此受到影響。他記得小時候住在舊金山的街道名稱,卻不記得昨天發生的事,此時科學家才知道原來海馬體對學習與記憶有重要影響,負責將短期記憶轉譯為長期記憶。

神經系統最重要的功能之一就是記憶,神經連結需要持續存在到生物體死亡,我們才會記得過去發生的事情並避免再次犯錯。如果所有的神經細胞不斷更新,神經連結也消失,那麼記憶會完全消失,我們就無法回憶過去的經驗。

不過,現在研究已發現,成年老鼠的海馬體有個區域稱為齒狀回(Dentate gyrus),仍然會長出新的神經元,這現象稱為成體神經新生(Adult neurogenesis)。至於人類海馬體是否也具有神經元不斷新生的能力,目前科學家的觀點尚未達成一致,仍需進一步研究。

老鼠海馬體橫切面上的齒狀回結構,如紅框標示,齒狀回區域在老鼠成年之後依然會長出新的神經元。圖/Wikipedia

您是研究海馬體的哪個方面呢?

我很好奇的是,實驗鼠的海馬體除了新生神經元區域之外,其他部位的神經元都是存在很久的神經網路,運作也正常。這些新生神經元是如何整合進入一個成熟的神經網路,且不會影響到原有運作呢?這就好比一群孩子要進入大人的群體與他們牽手,最後融入他們的社會。

我們發現到一些有趣機制:如果是 3 個月大的老鼠(相當於人類 20 歲左右),這時原本神經元長出樹突棘的能力高,新生神經元可以直接與之形成突觸;或是趕走其他佔位置的舊軸突,以形成新突觸。但如果是 18 個月大的老鼠(相當於人類 70 歲左右),長出樹突棘的能力下降,新生神經元就只能踢開其他軸突,才能形成新突觸。

這代表,年紀大時,新生神經元唯有踢走其他軸突才能形成新突觸,原本存在的記憶會被清除與消失。年紀小時,新生神經元即使不用踢走其他軸突,仍有機會形成新突觸,記憶力比較強。

此外,我們團隊觀察到,年輕老鼠的新生神經元到完全整合進入成熟的神經網路需要 8 週時間。不過,如果齒狀回一直持續新生神經元,海馬體是否會隨年紀而變越來越大?或者有些神經元會凋亡?這是我接下來很想要破解的謎團。

老鼠腦部齒狀回區域,新舊神經連結的示意圖。圖中左側像一束束小草的是成體新生神經元。圖中右側的接觸點,綠色為成體新生神經元軸突;灰色是舊有神經元軸突;紅色是 CA3 錐體神經元,這種神經元形成樹突的能力會隨年紀增長而下降。程淮榮團隊發現,年輕老鼠可以直接形成新的突觸,但是年長老鼠則只能排除舊有突觸,去掉舊有記憶,方能建立新連結。圖/研之有物(資料來源/程淮榮)

神經科學研究時通常都用老鼠做實驗嗎?

為了解釋特定生命現象或機制,由科學家廣泛採用且研究詳盡的生物,稱為模式動物。我過去曾經使用過的模式動物有線蟲、雞胚、老鼠和雪貂等。線蟲的神經數量少,每根神經、每個軸突都能看得很清楚。雪貂的體型較大,常用來作視覺和電生理研究。雞胚可以透過控制環境溫度,讓胚胎生長或停滯。老鼠的基因則跟人比較相近,但養起來很花時間。

各種模式動物有不同特性,適合不同的研究目的,目前我有許多研究都用老鼠來做。雖然了解人類神經系統是最重要的事,但科學家很難直接用人類做實驗,因此這些模式動物對人類的貢獻非常大,相當重要。

程淮榮團隊使用過的模式動物有:雞胚、線蟲、雪貂、小鼠。圖/研之有物(資料來源/Wikipedia、Unsplash)
程淮榮實驗室的小鼠,腦部已連上可輸出訊號的介面。圖/研之有物

我認為,基礎科學研究是一種等待意外發現的過程,這點跟應用科學研究不大一樣。我常鼓勵學生做實驗不要怕重複,要持續不斷去做。我以前喜歡做解剖,相同實驗會一直重複做,因為不斷重複去做才可能有意外發現。

例如某次實驗原本以為結果會跟之前一模一樣,卻突然發現有某處不一樣!我喜歡稱之為 Eureka Moment(恍然大悟的時刻),據說是阿基米德在浴缸洗澡時領悟分辨王冠真偽方法而大喊「Eureka!」。另一個相關名詞是 Serendipity,是指「意外發現」,代表沒辦法計畫的偶發事件,我也很喜歡。

基礎研究最棒的獎勵大概就是這意外發現的時刻,雖然我不過碰上兩、三次大的意外發現而已,但每次碰到就覺得無比開心!只是這感覺有時很難說明,要自己親身體驗才知道。

另外,我認為興趣很重要,並不是每個人都適合做基礎研究、當科學家。人人都是獨立個體,腦袋都不一樣,尤其這世界變化得很快、很難預測未來,因此,最重要的是去發掘自己的能力,找出擅長做的事。那什麼才是喜歡做的事呢?就是幾乎 24 小時都會想到它,甚至連睡覺都夢到,不會說下班五點後就不想它。如果人生可以一直做自己喜歡的事,那就是最幸運的事了!

程淮榮認為,喜歡做的事就是幾乎 24 小時都會想到它,如果人生可以一直做自己喜歡的事,那就是最幸運的事了! 圖/研之有物

延伸閱讀

研之有物│中央研究院_96
288 篇文章 ・ 2916 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
只要將大腦上傳到電腦中,複製出另一個你,就可以實現永生嗎?——《千腦智能新理論》
星出版
・2023/06/28 ・1983字 ・閱讀時間約 4 分鐘

假設在未來某個時候,我們有能力瞬間取得在電腦中重新創造一個人所需要的全部資料,假設我們的電腦有足夠能力模擬你和你的身體。果真如此,我完全不懷疑基於電腦的大腦會有意識和知覺,就像你一樣。但這會是你想要的嗎?也許你正在想像下列這種情境。

假設我們的電腦有足夠能力模擬你的身體、意識和知覺,這會是你想要的嗎?圖/Pixabay

你正處於生命的盡頭,醫師說你只剩下幾個小時的生命。此時你按下一個開關,你的大腦隨即一片空白。幾分鐘後,你醒過來,發現自己活在一個基於電腦的新身體裡。你的記憶完好無損,你覺得自己恢復了健康,展開新的永恆生命。你大喊:「耶!我還活著!」

現在想像一個稍微不同的情境。假設我們有技術可以複製你的生物大腦而不影響它,現在你按下開關之後,你的大腦被複製到一台電腦上,而你沒有任何感覺。幾分鐘後,電腦說:「耶!我還活著。」但是,你,那個生物你,還是存在。現在有兩個「你」,一個在生物身體中,一個在電腦身體中。電腦那個你說:「現在我已經上傳了,不需要原本那個身體了,請把它處理掉。」生物那個你說:「等一下,我還在,我不覺得有任何改變,我不想死。」我們應該如何處理這個問題?

解決這個難題的方法,或許就是讓生物那個你度過餘生,自然死亡。這似乎很合理。但是,在生物你死亡之前,世上有兩個你。生物你與電腦你會有不同的經歷,因此隨著時間推移,兩者漸行漸遠,變成了不同的人。例如,生物你和電腦你可能會發展出不同的道德與政治立場,生物你可能會後悔創造了電腦你,而電腦你可能不喜歡有一個生物老人聲稱是自己。

在生物你死亡之前,世上有兩個你。隨著時間推移,兩者漸行漸遠,可能會發展出不同的道德與政治立場。圖/Pexels

更糟的是,你很可能會有壓力在你年輕時就上傳你的大腦。例如,想像一下,電腦你的智能健康,取決於大腦上傳時生物你的智能健康。因此,為了盡可能提高你的永生版本的生活品質,你應該在你心智健康最好時上傳你的大腦,譬如 35 歲時。你可能想在年輕時上傳大腦的另一個原因是,你以肉身活著的每一天都有可能意外死亡,因此失去永生的機會。因此,你決定在 35 歲時上傳自己。

請捫心自問:35 歲的生物你在複製了自己的大腦之後,可以安然殺死自己嗎?隨著你的電腦版本展開自己的生活,你(生物你)則慢慢衰老、最終死去,生物你會覺得自己已得到永生嗎?我認為答案是否定的。「上傳你的大腦」是個誤導的說法,你真正做的是把自己分裂成兩個人。

現在再想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了三個自己。現在有四個電腦你和一個生物你,這五個你開始有不同的經歷,漸行漸遠。每一個你都有獨立的意識,你是否已得永生?那四個電腦你,哪一個是永生的你?生物你慢慢衰老、邁向死亡,看著四個電腦你過各自的生活。這裡沒有共同的「你」,只有五個個體,雖然起初有相同的大腦和記憶,但隨即成為獨立的存在,此後過著不同的生活。

想像一下,你上傳了你的大腦,然後電腦那個你立刻複製了好幾個自己,每個都有獨立的意識和不同的經歷,哪一個才是永生的你?圖/Pixabay

也許你已經注意到,這些情境與生孩子相似。當然,最大的不同是你不會在孩子出生時,上傳你的大腦到孩子的腦袋裡。然而,我們可說是在某程度上試圖這麼做,我們把家族史告訴孩子,教導他們,希望他們建立和我們一樣的道德觀和信仰。藉由這種方式,我們將我們的一些知識轉移到孩子的大腦裡。但隨著他們長大,他們會有自己的經歷,成為獨立的人,就像你上傳大腦產生的電腦你那樣。

想像一下,如果你能把你的大腦上傳給你的孩子,你會這麼做嗎?如果你這麼做,我相信你會後悔。你的孩子將背負你的記憶,終其一生將致力忘記你做過的一切。

上傳大腦乍聽是個極好的主意,誰不想得永生呢?但是,藉由上傳大腦到電腦中來複製自己,其實無法實現永生,就像生孩子無法實現永生那樣。複製自己是開出一條岔路,而不是延伸原本的路。開出岔路之後,會有兩個擁有知覺和自我意識的存在,而不是只有一個。一旦你意識到這一點,上傳大腦的吸引力就會開始減弱。

——本文摘自《千腦智能新理論》,2023 年 5 月,星出版出版,未經同意請勿轉載。

星出版
3 篇文章 ・ 0 位粉絲