廣義相對論與黑洞的愛恨情仇
人們常說,廣義相對論「預測」了黑洞。這句話只說對了一半──根據相對論,巨大的恆星最終無可避免變成黑洞,但是相對論的黑洞存在著問題。
1965 至 70 年之間,潘羅斯和霍金(Stephen Hawking)證明,廣義相對論預示黑洞裡存在一個密度無限大、時空曲率無限大的奇異點。在這裡,二十世紀新物理的兩大體系──相對論與量子力學並不合!
微觀的世界會發生許多量子力學的效應,相對論卻是巨觀的,並沒有關心到微觀的問題。在黑洞奇異點這個無窮小的極端狀況下,相對論無可避免地要接受量子力學的挑戰。有些物理學家試圖整合兩大體系,提出「量子重力」理論。
黑洞的奇異點,可能是個量子重力主導的世界。相對論預測的黑洞,所有東西掉進去就出不來,不可能有輻射。然而量子力學用機率的觀點描述世界,不再有絕對的零,承認「無中生有」的起伏,真空並不是真的空。量子重力理論,則認為重力也會有量子起伏。考慮了量子現象之後,澤爾多維奇(Yakov Zeldovich)、貝肯斯坦(Jacob Bekenstein)和霍金發展出一套新理論,說明黑洞不是真的那麼「黑」,事件視界會有「霍金輻射(Hawking radiation)」。
相對論的黑洞,更不可理解的是「裸奇異點」,也就是沒有被包藏在事件視界裡面、觀察者有可能與它接觸的奇異點。相對論「容許」裸奇異點出現,但是裸奇異點的存在會引發思想危機,尤其是決定論的哲學觀點。難道,它會混亂無章地,突然把遠古時代的一個事件吐出來嗎?世界上的因果關係是否會被動搖?
面對這項危機,潘羅斯提出了一個耐人尋味的方案:「宇宙審查猜想(Cosmic censorship conjecture)」。也許大自然早已設計了另一個機制,讓裸奇異點不能存在,來阻止這種奇怪的事情發生。這個猜想,物理學家至今議論紛紛。到底是我們的世界觀還無法接受這樣的挑戰,抑或是宇宙真有這樣巧妙的機制?
在現實世界尋找黑洞
我們回到現實的宇宙,該如何尋找黑洞呢?一般的恆星不會發出強烈的 X射線,但是中子星、黑洞可以,於是 X射線是尋找黑洞的線索。不過因為 X射線天文觀測必須飛離大氣層的干擾,因此發展得很晚。1971 年,新的 X射線望遠鏡觀測到一個可疑的天體──天鵝座 X-1 雙星系統。這個系統中,一顆星發出 X射線而幾無可見光,另一顆星正好相反。
1974 年,索恩與霍金打賭天鵝座 X-1 是黑洞,索恩賭「是」,霍金賭「不是」。這個問題是可以得到答案的,假如發出 X射線的星體質量超過 3倍太陽質量,根據歐本海默的理論,它就無法以中子星的形式作,只能變成黑洞。
到了 1990 年,霍金趁索恩去莫斯科做研究的時候,闖入索恩在加州理工大學的辦公室,把當年的「契約」找出來,壓指印認輸。於是索恩贏得了賭注──一年份的情色雜誌。這搞到索恩的太太相當驚慌!
從 1963 年發現類星體之後,隨著了解越來越多,天文學家發現它的本質其實是「活躍星系核」,能量的供應來源,顯然是超大質量黑洞吸積物質的過程。有些活躍星系核甚至有相對論性噴流(註:「相對論性」指速度非常快,快到接近光速,必須用相對論描述)。例如 EHT 的觀測目標 M87 星系,不但有活躍星系核,還有高速而筆直的噴流。這些證據一再指出,中間有個巨大的黑洞在作怪。
我們的銀河系雖然不是活躍星系核,中央仍然有個黑洞,位在銀河系中央的人馬座A* 無線電波源。天文學家長期追蹤銀河系中央一些星體的運動軌跡,證實中央需要有個黑洞,其質量高達太陽的4百萬倍。
- 影片說明:凱克望遠鏡長年追蹤銀河系中心的星體運動軌跡,據此計算出超大質量黑洞的性質。
2015 年 9 月,當廣義相對論百週年紀念活動如火如荼進行時,雷射干涉重力波天文台(LIGO)史上第一次接收到重力波。訊號經過分析,得知是雙黑洞合併事件,兩個分別為 36 和 29 倍太陽質量的黑洞撞在一起,最後合而為一。
經過數十年的觀測,許多天文現象,都必須用黑洞來解釋。在第一張黑洞影像出現之前,黑洞作為現實宇宙中的天體,多數天文學家沒有疑問了。
第一張黑洞的直接影像
想要看到黑洞的事件視界非常困難,因為黑洞太小了。如果有個和地球一樣重的黑洞,它的史瓦西半徑只有不到一公分。M87星系的超大質量黑洞,當然大多了,但是我們如果要從地球上看見,就必須達到驚人的解析度,差不多是要在台北看清楚蒙古草原上的一根羊毛!
在 2017 年 4 月,EHT 終於拍到史上第一張黑洞的直接影像。這是利用特長基線干涉技術,加上全球戮力合作,聚集最強大的望遠鏡組合,才有可能辦到。接著由中研院天文所等全球好幾組人馬,處理龐大的資料,分別反覆確認之後,終於在 2019 年 4 月 10 日將這個了不起的成果公諸於世。
拍到黑洞照片,又能告訴我們什麼?
霍金早就向索恩認輸了,天文學家也幾乎都相信黑洞是宇宙中的天體,那為何還要大費周章拍攝一張看起來像甜甜圈的黑洞照片呢?為了證明愛因斯坦的天才嗎?
科學哲學家孔恩(Thomas Kuhn)認為,常態科學家並不是在挑戰目前的「典範(paradigm)」,而是在典範之下從事解謎活動,基本上是在處理三種問題——確定事實、將事實與理論對應、使理論連貫。
許多天文學家關注的並非「廣義相對論是否正確」,而是在此理論架構下,我們可以確定更多關於黑洞的事實。星系如何誕生、如何演化還是一個謎團,而星系中央的超大質量黑洞與此息息相關。是黑洞吃飽了才長出星系,還是星系夠大才有能力長出黑洞?還是雞生蛋、蛋生雞的問題?我們的銀河系中央也有一個大黑洞,它是否可以幫助解答銀河系的誕生,進而解答我們為什麼在這裡?
另一方面,黑洞事件視界的觀測,也是事實與理論的對應。廣義相對論不僅承認黑洞「存在」,也描述了黑洞「該長什麼樣子」。我們需要實際觀測,看黑洞是否真的長這樣。
過去我們所知的都是黑洞的間接證據,從強烈的 X射線、周邊星體的運行軌道,得知它與相對論推衍出的黑洞一致。好比說,我們在森林裡面,看到某種動物的腳印、糞便,知道牠顯然存在於附近。但是誰知道大自然不會給我們意外呢?看到牠的身影,我們更確定是我們預想的那種動物。
天文觀測不停地向黑洞本身推進,從黑洞在周圍留下的腳印,追到了黑洞的蹤影。我們無法真正看到黑洞「本身」,因為光線沒辦法從黑洞出來,但是看到黑洞的「剪影」,看見事件視界的輪廓,也確認中間真的有個不發光的洞,使我們更接近黑洞一步。
對於現實世界觀察或實驗的範疇,總會有個邊界,而科學家不斷嘗試擴展邊界。廣義相對論設下了一個能夠觀測的極限邊界,那就是事件視界,裡頭的光出不來,無法看見。如今,天文觀測終於開始觸及到理論劃下的邊界,這個開疆拓土的知識探求,令人相當興奮!
愛因斯坦本人都還沒走到這一步。他不相信黑洞存在,因為黑洞違反生活經驗。但是人類的「經驗」是不斷重新劃界的,人們的相信與懷疑經常都很短暫。科學的過程,則在理論與觀測不斷的辯證之中,挑戰知識的邊界。黑洞原來是完全超越現實經驗的,科學家先由理論洞察出黑洞的存在,如今更將其轉為可直接觀測的東西。觀測的邊界擴大,也開闊了人類的心智。原來我們生活的世界這麼有意思!
- 影片說明:廣義相對論磁流體力學模擬,得到黑洞剪影的預期模樣(Credit:Hotaka Shiokawa)。
不斷擴大觀察的邊界,越多事實可以與理論對應。這次拍到的黑洞影像,科學家將它和廣義相對論克爾解比較,並且初步發現是一致的。利用「廣義相對論磁流體力學」的電腦模擬,得到理論預測黑洞周圍的光線分布,比較之下,確認觀測結果符合一個順時鐘旋轉的克爾黑洞。
這代表說,過去幾十年理論家的預測,至少是相當成功的。克爾找到旋轉黑洞的解,潘羅斯和霍金證明穩定的黑洞都是是克爾解,如今真正看到的黑洞,的確與此一致。
解釋黑洞,一定是用廣義相對論嗎?
我們需要留意,這張黑洞影像是與廣義相對論的預測「一致」,但不確定是否只有廣義相對論能夠解釋。EHT發表的論文說明,這次拍到的影像與與克爾黑洞一致,並且檢驗了其他幾個替代方案(包括相對論及非相對論的其他黑洞假說)。這張照片確實殺掉了幾種假說,不過還有一些理論是不被排除的,而目前仍無法分辨。
科學家不斷尋求在各種情境下測試相對論,黑洞觀測即是強重力場下的測試。黑洞是相對論可解釋的邊緣地帶,現在相對論暫時通過了測試,但是繼續測試過程中,也許會發現更多問題。
因此,觀測到事件視界並不是終點,廣義相對論與量子力學的戰場於茲揭幕。這次EHT發表的一系列論文中,第一篇第一段就談到,「在史瓦西之後超過一個世紀,在廣義相對論與量子力學統合上,黑洞仍處於基本問題的心臟地帶。」未來有更高解析度的黑洞影像,科學家將有機會測試不同重力理論的預測,而後可以繼續詢問:一定是廣義相對論嗎?
我還可以從另一個角度切入思考,一定是廣義相對論嗎?前文說過,牛頓力學也可以描述某種「黑洞」(黑星)現象,而且還與相對論預測的黑洞有幾分相似。假想一個情境,在相對論出現之前,人類就看到黑洞,說不定也會認為這是牛頓力學的成功預測?我們發覺,牛頓力學也有能力粗糙地描摹或預測黑洞,只不過歷史發展沒有給牛頓這樣的表現機會。
這意味著,不同理論可能都有能力在某些程度上成功掌握著黑洞樣貌。是誰暫時取勝,則牽涉到科學史的複雜背景。人類尋找黑洞的過程,主要是以相對論作為重力理論的典範(註:孔恩的術語),於是當科學家發覺相對論真的預測黑洞,其中包括一些牛頓力學無法說明的現象,這時就會說,相對論取得一定的成功。相對論目前成功了,但不是絕對的勝利,黑洞不見得是專屬於相對論的東西。
我們看到,理論都有成功之處,也都有侷限。在黑洞的解釋上,牛頓力學不如想像那麼失敗,而相對論與量子力學在黑洞的不合,則顯現了相對論的侷限。今天看到黑洞與相對論的預測一致,也許只是暫時的一致。量子重力或未來的其他理論,可能將更成功地解釋黑洞的觀測現象,甚至促成新的科學革命。
我們不用過度迷信愛因斯坦。不過話說回來,仍然無庸置疑的是,廣義相對論在這一百年來取得了重大的成功。當我們了解到科學理論的侷限,反而更懂得欣賞廣義相對論革命性的意義。在廣義相對論典範之下的黑洞探尋,經歷多年的相信與懷疑,終於在理論與觀測的辯證之中,把人類的心智推進到一個從未能以現實經驗想像的領域。
參考資料:
- Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven: Yale University Press, 2015.
- Begelman, Mitchell C., and Martin J. Rees. Gravity’s Fatal Attraction : Black Holes in the Universe. Cambridge: Cambridge University Press,
- Curiel, “Singularities and Black Holes.” Stanford Encyclopedia of Philosophy. February 27, 2019. Accessed April 15, 2019. https://plato.stanford.edu/entries/spacetime-singularities/.
- “Event Horizon Telescope.” Event Horizon Telescope. Accessed April 15, https://eventhorizontelescope.org/.
- Event Horizon Telescope Collaboration, et al. 2019, ApJL, 875, L1, L4, L5, L6
- Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press,
- Melia, Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics. Chicago: University of Chicago Press, 2009.
- Thorne, Kip S. Black Holes and Time Warps: Einsteins Outrageous Legacy. New York: W.W. Norton,
- Will, Clifford M. Was Einstein Right? : Putting General Relativity to the Test. 2nd ed. Oxford, UK: Oxford University Press,
- 史蒂芬霍金著,郭兆林、周念縈譯,《圖解時間簡史》,台北:大塊,2014。