0

0
2

文字

分享

0
0
2

從理論、懷疑到相信——人類探尋黑洞的漫漫長路(下)

歐柏昇
・2019/04/19 ・4685字 ・閱讀時間約 9 分鐘 ・SR值 545 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

廣義相對論與黑洞的愛恨情仇

人們常說,廣義相對論「預測」了黑洞。這句話只說對了一半──根據相對論,巨大的恆星最終無可避免變成黑洞,但是相對論的黑洞存在著問題。

1965 至 70 年之間,潘羅斯和霍金(Stephen Hawking)證明,廣義相對論預示黑洞裡存在一個密度無限大、時空曲率無限大的奇異點。在這裡,二十世紀新物理的兩大體系──相對論與量子力學並不合!

微觀的世界會發生許多量子力學的效應,相對論卻是巨觀的,並沒有關心到微觀的問題。在黑洞奇異點這個無窮小的極端狀況下,相對論無可避免地要接受量子力學的挑戰。有些物理學家試圖整合兩大體系,提出「量子重力」理論。

史蒂芬·霍金。圖/NASA

黑洞的奇異點,可能是個量子重力主導的世界。相對論預測的黑洞,所有東西掉進去就出不來,不可能有輻射。然而量子力學用機率的觀點描述世界,不再有絕對的零,承認「無中生有」的起伏,真空並不是真的空。量子重力理論,則認為重力也會有量子起伏。考慮了量子現象之後,澤爾多維奇(Yakov Zeldovich)、貝肯斯坦(Jacob Bekenstein)和霍金發展出一套新理論,說明黑洞不是真的那麼「黑」,事件視界會有「霍金輻射(Hawking radiation)」。

相對論的黑洞,更不可理解的是「裸奇異點」,也就是沒有被包藏在事件視界裡面、觀察者有可能與它接觸的奇異點。相對論「容許」裸奇異點出現,但是裸奇異點的存在會引發思想危機,尤其是決定論的哲學觀點。難道,它會混亂無章地,突然把遠古時代的一個事件吐出來嗎?世界上的因果關係是否會被動搖?

面對這項危機,潘羅斯提出了一個耐人尋味的方案:「宇宙審查猜想(Cosmic censorship conjecture)」。也許大自然早已設計了另一個機制,讓裸奇異點不能存在,來阻止這種奇怪的事情發生。這個猜想,物理學家至今議論紛紛。到底是我們的世界觀還無法接受這樣的挑戰,抑或是宇宙真有這樣巧妙的機制?

在現實世界尋找黑洞

我們回到現實的宇宙,該如何尋找黑洞呢?一般的恆星不會發出強烈的 X射線,但是中子星、黑洞可以,於是 X射線是尋找黑洞的線索。不過因為 X射線天文觀測必須飛離大氣層的干擾,因此發展得很晚。1971 年,新的 X射線望遠鏡觀測到一個可疑的天體──天鵝座 X-1 雙星系統。這個系統中,一顆星發出 X射線而幾無可見光,另一顆星正好相反。

錢德拉 X射線望遠鏡拍攝的天鵝座 X-1 雙星系統。圖/NASA/CXC/SAO

1974 年,索恩與霍金打賭天鵝座 X-1 是黑洞,索恩賭「是」,霍金賭「不是」。這個問題是可以得到答案的,假如發出 X射線的星體質量超過 3倍太陽質量,根據歐本海默的理論,它就無法以中子星的形式作,只能變成黑洞。

到了 1990 年,霍金趁索恩去莫斯科做研究的時候,闖入索恩在加州理工大學的辦公室,把當年的「契約」找出來,壓指印認輸。於是索恩贏得了賭注──一年份的情色雜誌。這搞到索恩的太太相當驚慌!

M87星系中央,藍色是在X射線所見到的熱氣,橘色是在電波所見到的相對論性噴流。圖/X-ray: NASA/CXC/KIPAC/N. Werner et al Radio: NSF/NRAO/AUI/W. Cotton

從 1963 年發現類星體之後,隨著了解越來越多,天文學家發現它的本質其實是「活躍星系核」,能量的供應來源,顯然是超大質量黑洞吸積物質的過程。有些活躍星系核甚至有相對論性噴流(註:「相對論性」指速度非常快,快到接近光速,必須用相對論描述)。例如 EHT 的觀測目標 M87 星系,不但有活躍星系核,還有高速而筆直的噴流。這些證據一再指出,中間有個巨大的黑洞在作怪。

我們的銀河系雖然不是活躍星系核,中央仍然有個黑洞,位在銀河系中央的人馬座A* 無線電波源。天文學家長期追蹤銀河系中央一些星體的運動軌跡,證實中央需要有個黑洞,其質量高達太陽的4百萬倍。

  • 影片說明:凱克望遠鏡長年追蹤銀河系中心的星體運動軌跡,據此計算出超大質量黑洞的性質。

2015 年 9 月,當廣義相對論百週年紀念活動如火如荼進行時,雷射干涉重力波天文台(LIGO)史上第一次接收到重力波。訊號經過分析,得知是雙黑洞合併事件,兩個分別為 36 和 29 倍太陽質量的黑洞撞在一起,最後合而為一。

經過數十年的觀測,許多天文現象,都必須用黑洞來解釋。在第一張黑洞影像出現之前,黑洞作為現實宇宙中的天體,多數天文學家沒有疑問了。

第一張黑洞的直接影像

想要看到黑洞的事件視界非常困難,因為黑洞太小了。如果有個和地球一樣重的黑洞,它的史瓦西半徑只有不到一公分。M87星系的超大質量黑洞,當然大多了,但是我們如果要從地球上看見,就必須達到驚人的解析度,差不多是要在台北看清楚蒙古草原上的一根羊毛!

在 2017 年 4 月,EHT 終於拍到史上第一張黑洞的直接影像。這是利用特長基線干涉技術,加上全球戮力合作,聚集最強大的望遠鏡組合,才有可能辦到。接著由中研院天文所等全球好幾組人馬,處理龐大的資料,分別反覆確認之後,終於在 2019 年 4 月 10 日將這個了不起的成果公諸於世。

EHT拍攝到的M87黑洞,是人類史上第一張黑洞影像。圖/EHT Collaboration

拍到黑洞照片,又能告訴我們什麼?

霍金早就向索恩認輸了,天文學家也幾乎都相信黑洞是宇宙中的天體,那為何還要大費周章拍攝一張看起來像甜甜圈的黑洞照片呢?為了證明愛因斯坦的天才嗎?

科學哲學家孔恩(Thomas Kuhn)認為,常態科學家並不是在挑戰目前的「典範(paradigm)」,而是在典範之下從事解謎活動,基本上是在處理三種問題——確定事實、將事實與理論對應、使理論連貫。

許多天文學家關注的並非「廣義相對論是否正確」,而是在此理論架構下,我們可以確定更多關於黑洞的事實。星系如何誕生、如何演化還是一個謎團,而星系中央的超大質量黑洞與此息息相關。是黑洞吃飽了才長出星系,還是星系夠大才有能力長出黑洞?還是雞生蛋、蛋生雞的問題?我們的銀河系中央也有一個大黑洞,它是否可以幫助解答銀河系的誕生,進而解答我們為什麼在這裡?

另一方面,黑洞事件視界的觀測,也是事實與理論的對應。廣義相對論不僅承認黑洞「存在」,也描述了黑洞「該長什麼樣子」。我們需要實際觀測,看黑洞是否真的長這樣。

過去我們所知的都是黑洞的間接證據,從強烈的 X射線、周邊星體的運行軌道,得知它與相對論推衍出的黑洞一致。好比說,我們在森林裡面,看到某種動物的腳印、糞便,知道牠顯然存在於附近。但是誰知道大自然不會給我們意外呢?看到牠的身影,我們更確定是我們預想的那種動物。

天文觀測不停地向黑洞本身推進,從黑洞在周圍留下的腳印,追到了黑洞的蹤影。我們無法真正看到黑洞「本身」,因為光線沒辦法從黑洞出來,但是看到黑洞的「剪影」,看見事件視界的輪廓,也確認中間真的有個不發光的洞,使我們更接近黑洞一步。

對於現實世界觀察或實驗的範疇,總會有個邊界,而科學家不斷嘗試擴展邊界。廣義相對論設下了一個能夠觀測的極限邊界,那就是事件視界,裡頭的光出不來,無法看見。如今,天文觀測終於開始觸及到理論劃下的邊界,這個開疆拓土的知識探求,令人相當興奮!

愛因斯坦本人都還沒走到這一步。他不相信黑洞存在,因為黑洞違反生活經驗。但是人類的「經驗」是不斷重新劃界的,人們的相信與懷疑經常都很短暫。科學的過程,則在理論與觀測不斷的辯證之中,挑戰知識的邊界。黑洞原來是完全超越現實經驗的,科學家先由理論洞察出黑洞的存在,如今更將其轉為可直接觀測的東西。觀測的邊界擴大,也開闊了人類的心智。原來我們生活的世界這麼有意思!

  • 影片說明:廣義相對論磁流體力學模擬,得到黑洞剪影的預期模樣(Credit:Hotaka Shiokawa)。

不斷擴大觀察的邊界,越多事實可以與理論對應。這次拍到的黑洞影像,科學家將它和廣義相對論克爾解比較,並且初步發現是一致的。利用「廣義相對論磁流體力學」的電腦模擬,得到理論預測黑洞周圍的光線分布,比較之下,確認觀測結果符合一個順時鐘旋轉的克爾黑洞。

這代表說,過去幾十年理論家的預測,至少是相當成功的。克爾找到旋轉黑洞的解,潘羅斯和霍金證明穩定的黑洞都是是克爾解,如今真正看到的黑洞,的確與此一致。

解釋黑洞,一定是用廣義相對論嗎?

我們需要留意,這張黑洞影像是與廣義相對論的預測「一致」,但不確定是否只有廣義相對論能夠解釋。EHT發表的論文說明,這次拍到的影像與與克爾黑洞一致,並且檢驗了其他幾個替代方案(包括相對論及非相對論的其他黑洞假說)。這張照片確實殺掉了幾種假說,不過還有一些理論是不被排除的,而目前仍無法分辨。

科學家不斷尋求在各種情境下測試相對論,黑洞觀測即是強重力場下的測試。黑洞是相對論可解釋的邊緣地帶,現在相對論暫時通過了測試,但是繼續測試過程中,也許會發現更多問題。

因此,觀測到事件視界並不是終點,廣義相對論與量子力學的戰場於茲揭幕。這次EHT發表的一系列論文中,第一篇第一段就談到,「在史瓦西之後超過一個世紀,在廣義相對論與量子力學統合上,黑洞仍處於基本問題的心臟地帶。」未來有更高解析度的黑洞影像,科學家將有機會測試不同重力理論的預測,而後可以繼續詢問:一定是廣義相對論嗎?

我還可以從另一個角度切入思考,一定是廣義相對論嗎?前文說過,牛頓力學也可以描述某種「黑洞」(黑星)現象,而且還與相對論預測的黑洞有幾分相似。假想一個情境,在相對論出現之前,人類就看到黑洞,說不定也會認為這是牛頓力學的成功預測?我們發覺,牛頓力學也有能力粗糙地描摹或預測黑洞,只不過歷史發展沒有給牛頓這樣的表現機會。

這意味著,不同理論可能都有能力在某些程度上成功掌握著黑洞樣貌。是誰暫時取勝,則牽涉到科學史的複雜背景。人類尋找黑洞的過程,主要是以相對論作為重力理論的典範(註:孔恩的術語),於是當科學家發覺相對論真的預測黑洞,其中包括一些牛頓力學無法說明的現象,這時就會說,相對論取得一定的成功。相對論目前成功了,但不是絕對的勝利,黑洞不見得是專屬於相對論的東西。

我們看到,理論都有成功之處,也都有侷限。在黑洞的解釋上,牛頓力學不如想像那麼失敗,而相對論與量子力學在黑洞的不合,則顯現了相對論的侷限。今天看到黑洞與相對論的預測一致,也許只是暫時的一致。量子重力或未來的其他理論,可能將更成功地解釋黑洞的觀測現象,甚至促成新的科學革命。

我們不用過度迷信愛因斯坦。不過話說回來,仍然無庸置疑的是,廣義相對論在這一百年來取得了重大的成功。當我們了解到科學理論的侷限,反而更懂得欣賞廣義相對論革命性的意義。在廣義相對論典範之下的黑洞探尋,經歷多年的相信與懷疑,終於在理論與觀測的辯證之中,把人類的心智推進到一個從未能以現實經驗想像的領域。

參考資料:

  • Bartusiak, Black Hole: How an Idea Abandoned by Newtonians Hated by Einstein and Gambled on by Hawking Became Loved. New Haven: Yale University Press, 2015.
  • Begelman, Mitchell C., and Martin J. Rees. Gravity’s Fatal Attraction : Black Holes in the Universe. Cambridge: Cambridge University Press,
  • Curiel, “Singularities and Black Holes.” Stanford Encyclopedia of Philosophy. February 27, 2019. Accessed April 15, 2019. https://plato.stanford.edu/entries/spacetime-singularities/.
  • “Event Horizon Telescope.” Event Horizon Telescope. Accessed April 15, https://eventhorizontelescope.org/.
  • Event Horizon Telescope Collaboration, et al. 2019, ApJL, 875, L1, L4, L5, L6
  • Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press,
  • Melia, Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics. Chicago: University of Chicago Press, 2009.
  • Thorne, Kip S. Black Holes and Time Warps: Einsteins Outrageous Legacy. New York: W.W. Norton,
  • Will, Clifford M. Was Einstein Right? : Putting General Relativity to the Test. 2nd ed. Oxford, UK: Oxford University Press,
  • 史蒂芬霍金著,郭兆林、周念縈譯,《圖解時間簡史》,台北:大塊,2014。
文章難易度
歐柏昇
13 篇文章 ・ 5 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

122
3

文字

分享

0
122
3
愛因斯坦是第一個發現狹義相對論的物理學家嗎?
賴昭正_96
・2022/10/21 ・7324字 ・閱讀時間約 15 分鐘

  • 文|賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

自從數學家入侵(狹義)相對論後,我自己也搞不懂了。
——愛因斯坦(Albert Einstein),1921 年諾貝爾物理獎得主

在「畢業求職碰壁,在伯爾尼專利局思索的愛因斯坦」裡,筆者提到了 1905 年愛因斯坦在專利局一口氣寫了五篇諾貝爾獎級的論文,投到德國名雜誌《物理年鑑》(Annalen der Physik),創造了理論物理界的一個「奇蹟年」。愛因斯坦曾希望他在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;但是事與願違,反應卻是非常冷淡。

正在絕望之際,愛因斯坦於 1906 年 3 月突然收到了一位物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)!

馬克斯.普朗克(Max Planck)。圖/維基百科

普朗克寫信告訴他說那篇題爲「關於運動物體的電動力學」(Zur Elektrodynamik bewegter Körper)論文「立即引起了我的熱烈關注」。在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,並公開地為愛因斯坦理論辯護,反對一波又一波的懷疑論者,終於使這篇完全改變牛頓之時空觀念的論文與量子力學一起開創了近代物理學(詳見「除了發現量子力學,普朗克還有第二個重大發現是什麼?」)。

可是愛因斯坦真的是首位發現狹義相對論的物理學家嗎?

馬克斯威方程式:用簡單的公式解釋電磁學

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式闡釋了當時已知的電磁現象。從那些簡潔的方程式中,他看出了原來的安培定律只適用於穩定的電流情況,因此人為地加進去一個現在稱為「位移電流」(displacement current)的項目!此「位移電流」不但解決了時變電場如何產生(誘導)磁場的問題(安培—馬克斯威定律),也讓馬克斯威看出電、磁本是一家人的對稱關係,使他成為第一位統合了自然界兩種不同作用力的科學家!也就是這一項令他在 1865 年導出電磁波的存在,並證明光事實上就是一種電磁波!

詹姆士.克拉克.馬克士威(James Clerk Maxwell)。圖/維基百科

這現在所謂的「馬克斯威方程式(Maxwell′s Equations)」事實上有一個很大的問題:與具有 300 多年歷史之牛頓力學衝突!在牛頓力學裡,速度是「相對」的;但馬克斯威方程式中卻包含與光源運動無關的「定值」光速(讀者注意到沒:牛頓第二定律公式只含加速度、沒有速度)!因此儘管後者在解釋電磁現象的成功是無可置疑的,不少理論物理學家還是想修正它使其能容於牛頓力學;其中最著名的就是眾所皆知的:認為空間充滿了絕對靜止的「以太」,「光速為定值」就是相對於這一固定的「以太」而言——這不但解決了光速問題,還使電磁波有個「機械」的基礎(像聲波需要靠空氣來傳播)。

於是實驗物理學家開始設計各種實驗來偵測這一「以太」或者地球在這一「以太」中的運動速度;不幸的是各種實驗都是空手而歸:偵測不到地球在「以太」中的運動速度(其中最著名的就是 1887 年之麥可森—莫利(Albert Michelson and Edward Morley)實驗)。於是理論物理學家就開始尋找各種理論來解釋這些失敗的原因……。

其中「最簡單的解釋」是:馬克斯威方程式適用於在「以太」中做等速運動的任何慣性系統(inertial frame)——稱為「相對性原理」(principle of relativity)。

相對性原理——伽利略

法國數學、物理、工程、哲學家龐加萊(Henri Poincaré)於 1904 年將「相對性原理」定義為:根據該原理,物理現象的定律無論是對於固定的觀察者,或等速平移運動的觀察者,都應該是相同的;所以我們沒有、也不可能有任何方法來辨別我們是否正在做這樣的運動。

事實上早在 1632 年,伽利略(Galileo Galilei)在「關於兩個主要世界系統的對話」(Dialogue Concerning the Two Chief World Systems)中,即已明確地闡述這一原理。正是因為這一個原理,所以我們沒有感覺到地球自轉及圍繞太陽運行(加速不夠快,所以大約是一個慣性系統);因此不管你什麼時候在台北或北京做實驗,所得到的結果或定律都應該是一樣的。

伽利略.伽利萊(Galileo Galilei)圖/維基百科

到了 19 世紀末、20 世紀初,物理學家已經完全接受這一原理。在數學上,他們謂牛頓力學定律必須符合「伽利略坐標轉換」(Galilean transformation)公式:物理定律不應因從甲坐標轉換到另一慣性系統之乙坐標而改變。馬克斯威方程式不符合這一坐標轉移,因此上面所提到的「最簡單的解釋」顯然不對!所以光速為定值還是一個謎。

洛倫茲與龐加萊

洛倫茲(Hendrik Lorentz, 1902 年諾貝爾物理獎得主)毫無疑問是十九世紀下半葉和二十世紀上半葉最偉大的物理學家之一。由於測不出地球在以太中的運動,洛倫茲提出理論謂:設備通過以太時,可能導致設備在運動方向上沿其長度方向收縮(空間收縮)。他進一步假設運動系統的「局部虛擬」時間[註1]也必須相應地改變(時間膨脹),導出了馬克斯威方程式必須符合的「洛倫茲(坐標)轉換」(Lorentz transformation)公式。

事實上龐加萊在 1898 年時即已意識到:「科學家必須將光速的恆定性作為一個假設,才能為物理理論提供最簡單的形式。」在相對性原理或洛倫茲轉換的物理解釋,龐加萊的貢獻至少比愛因斯坦早了 5 年;而在其它方面,他們的許多貢獻則可以說是同時發生的:例如不少科學家認為龐加萊 1905 年 6 月在法國科學院所宣讀的「關於電子動力學(Sur la dynamique de l’électron)」)刪節版,似乎「預見」了愛因斯坦 1905 年的相對論。

朱爾·亨利.龐加萊(法語:Jules Henri Poincaré) 圖/維基百科

愛因斯坦

1905 年,愛因斯坦在題為「關於運動物體的電動力學」的論文引言裡,開宗明義地謂「不要爭辯」光速了:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與前者不調和(irreconcilable)的公設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c[註2]。 這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

然後開始討論「運動學」,以光在任何等速坐標中都相同為出發點,用簡單的數學討論同時性的定義、關於長度和時間的相對性、從一個固定系統到另一個系統的時間與空間之坐標轉換理論、運動剛體和運動時鐘方程的物理意義、及速度的組成(相對運動的速度相加)。在這一章節裡愛因斯坦不需任何極端近似,就能推導出「洛倫茲轉換方程式」、時間膨脹(time dilation)、「洛倫茲—傅玆久拉空間收縮」Lorentz-FitzGerald contraction)等等學物理的都耳熟能詳想的的觀念。

第二章「電動部分」所用的數學就複雜多了。愛因斯坦在這裡將新的空間和時間理論應用於馬克斯威電動力學,證明電場與磁場是一物的兩面,因運動者的觀點而不同;馬克斯威實際上是遵循慣性運動的相對性原理:但因為我們一直認為空間和時間具有牛頓性質,而不是狹義相對論,故我們沒有注意到它而已。

狹義相對論的關鍵是同時性的相對性,只有在相對運動速度很小的情況下,牛頓的絕對時間和空間觀念才能(近似地)適用。所以原來是牛頓力學,而不是「馬克斯威方程式」錯了!所以愛因斯坦在該論文的最後一節裡「修正」牛頓第 2 運動定律,得到電子[註3]的動能:

式中 v 為電子的運動速度,m0 為電子的質量。愛因斯坦只指出「(所以)大於光速的速度……,沒有存在的可能性」[註4]

所以,到底是誰發現相對論?

德國物理學家郭夫曼(Walter Kaufmann)可能是第一個注意到愛因斯坦這篇論文之一的人:1905 年,他比較了洛倫茲和愛因斯坦的理論,謂大部分的物理學家可能會較喜歡後者的方法,但他認為這兩種理論在觀察上是等價的,因此他把相對性原理稱為「洛倫茲—愛因斯坦理論」。

這算是客氣的了!1953 年,英國數學、物理、歷史學家魏達克爾(Edmund Whittaker)爵士在總體評價上是正面的「以太和電理論史」(A History of the Theories of Aether and Electricity)一書中聲稱:相對論是龐加萊和洛倫茲的創造,愛因斯坦的貢獻並不大。

「以太和電理論史」(A History of the Theories of Aether and Electricity)一書出版於 1910 年。圖/維基百科

事實上我們應該放棄優先權的無意義爭論,探討不同方法之間的異同才能看出愛因斯坦的貢獻。愛因斯坦徹底消除了在物理學中沒有任何作用的以太,以光在任何等速坐標中都相同為出發點,探討了「同時」、空間、和時間的相對性。相比之下,龐加萊認為以太是一種定義了「真實」空間和時間的特殊參考系統,其它框架中測量的空間和時間則只是「表面的」。 愛因斯坦從他的兩個假設,用最少的數學知識,導出了當時需要幾個極端近似的洛倫茲轉換式;而龐加萊則因這樣的轉換可使馬克斯威方程式保持不變,而「被動地」反向導出這些轉換。愛因斯坦的論文不是因為要解釋實驗結果而東拼西湊出來的,它是「從公理開始,然後從中進行推論……」的美麗又簡單的理論。從他的假設中準確地推導出了當時需要幾個極端近似才能得到的結果。

洛倫茲在十年後終於完全意識到他自己的論點和愛因斯坦的論點之間的區別,謂「如果我現在必須寫最後一章,我當然應該給愛因斯坦的相對論一個更突出的位置……。(他的)運動電磁現象理論系統具有我無法達到的簡單性。」儘管如此,洛倫茲(1853~1928)從未接受愛因斯坦的相對論觀點——這讓愛因斯坦非常傷心,因為洛倫茲是他最敬佩的四位物理學家之一(其他三位是伽利略、牛頓、馬克斯威)。

愛因斯坦與洛倫茲於 1921 年的合影。圖/維基百科

閔可夫斯基時空

愛因斯坦在那篇論文裡一共提了 15 次的「空間」,但從來沒有將它和「時間」連在一起,所以他當時應該沒想到在他的新運動學裡,空間和時間處於完全相同地位。將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」之嶄新觀念的功勞歸於他在蘇黎世聯邦理工學院就讀時的數學老師閔可夫斯基(Hermann Minkowski)。這一新觀點奠定了相對論的數學基礎,完成了近代物理學家所熟悉之(狹義)相對論形式[註5]

愛因斯坦在理工學院就讀時,常常表現出一副無所不知的態度,不但很少注意閔可夫斯基的課,也常翹課,因此閔可夫斯基稱他為「懶狗 (lazy dog)」。愛因斯坦發表相對論後,閔可夫斯基評論道「我真不敢相信他能做到」。而愛因斯坦則一開始就反對閔可夫斯基所提之時空為一體的新觀念;在他第一次聽到它時甚至貶低它,謂那是「多餘的博學」,並抱怨「自從數學家入侵相對論後,我自己也搞不懂了」!誰又想到如果不是這一新觀念及其數學,他後來的廣義相對論將永遠發展不出來!

1908 年 9 月 21 日,閔可夫斯基(已經被挖角到德國哥廷根大學)在第 80 屆德國自然科學家和醫師大會上的演講謂:

……,擺在你們面前的空間和時間觀是從實驗物理學的土壤中產生的,因此蘊含著它們的力量。它們是革命性的(radical)。 從此,空間本身和時間本身注定要消逝於虛無之中,唯有兩者的某種結合才能保持獨立的現實。

在閔可夫斯基時空裡,單獨的空間和時間都不再是絕對的,而是因觀察者的運動狀態而異;但一體的時空則還是絕對的(詳見「牛頓的水桶」),比如所有觀察者測量得到的「兩點時空之距離」都是相同的。

有兩件事似乎說明了閔可夫斯基獨立地得出了愛因斯坦的狹義相對論和時空概念:

  1. 閔可夫斯基不可能那麼快的就於 1908 年報告、並發表 59 頁的成熟四維時空物理學,其內容充分地顯示了他對所有實驗都未能檢測到相對於絕對空間之均勻運動的原因有最深刻的理解;
  2. 他的學生玻恩(Max Born,1954 年諾貝爾物理獎得主)的回憶也證實閔可夫斯基獨立地在思考平面時空物理學。玻恩回憶說:在 1905 年初夏的一次內部研討會上,閔可夫斯基「偶爾提到」他的時空研究;「(但)因為他希望先弄清楚其所有輝煌的數學結構,因此沒有(提早)發表它們」,而讓愛因斯坦搶得先機。」

結論

從上面的分析看來,愛因斯坦那篇文章所討論到的幾乎都「古已有之」[註7];因此像普朗克波思(Satyendra Bose)一樣,愛因斯坦可能根本沒想到該篇電動力學論文是「革命性的」。知己莫若己,1905 年,在寫給好友哈比希特(Conrad Habicht)的信中,他只說「第一篇涉及輻射和光的能量特性,非常具有革命性:……第四篇論文現在還只是一個粗略的草稿,它是對時空理論進行修改之運動體的電動力學。」以「馬後砲」之明來看,第一篇光量子的假設只是量子力學發展中(或許是很重要)的一個螺絲而已,但第四篇相對論則是一下子推翻了三百多年古典物理中的時空觀念,讀者說那個具有革命性呢?所以愛因斯坦真的知道他發現了革命性的相對論嗎?

愛因斯坦解釋廣義相對論的手稿。圖/維基百科

後記

1915 年,愛因斯坦又發表了後來讓他一夜成名的廣義相對論,改寫了牛頓萬有引力理論;但也好事多磨,曾發生與非常傑出的數學物理學家、閔可夫斯基好友希爾伯特(David Hilbert)[註6]爭吵發現廣義相對論之頭銜。愛因斯坦也沒有因廣義相對論而獲得諾貝爾獎;他之獲得諾貝爾獎主要還是因他那自認為「非常具有革命性」的論文。

爭論如此之多,愛因斯坦為什麼要發表相對論呢?知己莫若己,且聽他道來:「我有時會問自己,我是如何發展相對論的。我認為其原因是:一個正常的成年人從不去思考空間和時間的問題——這些都是他小時候就想到的;但我的智力發育遲緩,因此長大後才開始思考空間和時間。」什麼?愛因斯坦發育遲緩?怪不得筆者曾為文謂愛因斯坦其實沒那麼神?反觀筆者自己,小時候從沒想過空間和時間,長大後也只知「生活空間」及「善用時間」而已,真是白痴一個!

註解

  1. 在愛因斯坦發表相對論之前,一般物理學家都認為只有一個絕對的時間。
  2. 愛因斯坦從來沒有說明為什麼要第二個光速為定值的假設,因為這似乎是多餘的:如果馬克斯威理論謂光速在一(靜態)體系內為 c,那麼依照第一個「相對性原理」的假設,在任何其它慣性坐標體系內的光速不應也是 c 麼?在網絡上有許多猜測與討論,但筆者認為是因為當時馬克斯威理論尚不容於古典之故。又,光速是一個實驗可以測出來的物理量,怎麼可以「假設」呢?
  3. 因為可以假設物體帶有非常微量的電荷,所以愛因斯坦大膽地認為其結論適用於「所有物體」。
  4. 當電子的運動速度比光速小多時,該公式就得回牛頓的動能公式。該公式暗示電子的質量會因運動而增加,因此在網路上可以看到許多誤認為該文提出了「質能相等」的觀念(洛倫茲等人也早就「暗示」了)。事實上愛因斯坦在該文中從未提及這些字眼;而在幾個月後又發表了一篇短文,從該公式推導出「物體的質量是其能量含量的量度:如果能量變化為 L,則質量在相同意義上的變化為 L/c2」,但也沒提及「質能相等」的觀念——儘管如此,物理學家還是將提出 E=mc2 的功勞歸於愛因斯坦(詳見「愛因斯坦其實沒那麼神?」)。這篇短文事實上一開始就在邏輯上受到批評,而第一位批評的不是別人,竟然正是「發掘」他的普朗克!
  5. 正像波爾(Niels Bohr)等人在普朗克及愛因斯坦之後完成了近代物理的量子力學一樣(詳見《量子的故事》)。
  6. 正是他將閔可夫斯基挖角到德國哥廷根大學,使得該校成為當時全世界之數學物理學重鎮。可惜閔可夫斯基英年早逝,1909 年元月,正當相對論起飛時死於急性盲腸炎,時年才 45 歲。
  7. 不少物理學家及歷史學家都認為如果要發諾貝爾相對論獎,則除了愛因斯坦外,也應該包括洛倫茲及龐加萊。

延伸閱讀

賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

11
7

文字

分享

2
11
7
宇宙到底從哪來?從量子力學和相對論來看「宇宙起源」,解釋完全不一樣!——《宇宙大哉問》
天下文化_96
・2022/09/25 ・2200字 ・閱讀時間約 4 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

宇宙從何而來?

每當仰望滿天星斗絢爛壯麗的夜空,或驚嘆微觀世界錯綜複雜的美景時,你不禁會問:「這一切從何而來?宇宙為什麼存在?是什麼東西或是誰負責這一切?」

長期以來,人們一直不斷臆測,讓人驚嘆不已的宇宙真實起源。當然,這比起我們擁有物理學或漫畫的時間要長得多。瞭解宇宙起源很重要,因為有可能會解釋我們存在的來龍去脈。我們想知道我們是怎麼來的,因為這問題的答案可能揭露:我們為什麼在這裡,以及我們應該如何度過時間。如果你知道宇宙從何而來,你的生活方式可能會改變。

因此,在所有問題中最大的問題是,物理學究竟可以告訴我們什麼?

在一開始的時候

在我們問宇宙從何而來或它是如何形成之前,我們需要先退一步想想。我們首先要問的應該是「宇宙是誕生出來的,還是本來就一直存在?」

你可能會驚訝的發現,物理學對這個問題有很多論述。可惜的是,很多論述內容並不是很一致。事實上,量子力學和相對論這兩個偉大的理論,在宇宙主題上指出了兩個截然不同的方向。

量子宇宙

量子力學表明宇宙遵循著我們不熟悉的規則。根據量子力學,粒子和能量以奇怪和不確定的方式表現。這可能令人非常困惑,但幸運的是,這跟我們手上的問題並不相關。因為量子力學對宇宙的過去和未來實際上是一清二楚的。

量子力學用量子態來描述事物。量子態告訴你,與量子對象交互作用時,事情可能發生的概率。例如,它可能會告訴你粒子位置的機率。你可能不知道粒子現在在哪裡,但你可以知道它可能在哪裡。

量子態很有趣,因為如果你知道今天量子物體的狀態,你可以用它來預測明天、兩週後,或者十億年後的狀態。量子力學中最著名的方程式是薛丁格方程式,跟貓和盒子無關。薛丁格方程式告訴你:如何利用你對宇宙的瞭解並將宇宙向未來投射。它也可以反推,可以利用你對現在的瞭解,告訴你宇宙在過去是什麼樣子。

根據量子力學,這種預測能力沒有時間限制。它的基本原則是:量子資訊不會消失,只是轉變為新的量子態。也就是說,如果你知道宇宙今天的量子態,就可以計算出它在任何時間點的量子態。量子力學告訴我們,宇宙在時間上永遠向後和向前推展。

這代表一個非常簡單的事實:宇宙一直存在,並將永遠存在。如果我們對量子力學的理解是正確的,那麼宇宙就沒有起始點。

相對論宇宙

然而,愛因斯坦相對論卻告訴我們一個截然不同的故事。量子力學有個問題,它通常假設空間是靜態的,就像一個固定的背景,你可以在那裡懸掛粒子和場。但是相對論告訴我們,這觀念大錯特錯。

根據相對論,空間是動態的,它可以彎曲、伸展和壓縮。我們可以看到空間在黑洞或太陽之類的重物體附近彎曲。愛因斯坦的理論還描述了整個空間如何膨脹。空間不僅僅是平坦的空虛;它被重物局部扭曲,並且愈來愈大。

這個瘋狂的想法最初來自於相對論中的數學,但現在我們有實驗能加以證明。透過望遠鏡,我們可以看到星系每年愈來愈快的遠離我們。宇宙中的一切似乎都變得愈來愈分散和愈來愈冷,就像氣體在膨脹時冷卻一樣。

對宇宙的起源來說,這代表什麼含義呢?呃……如果把時鐘倒轉,我們的觀察預測出宇宙曾經更熾熱、更密集。如果回溯足夠遠的時間,宇宙就會到達一個特殊的點:奇異點。

此時,宇宙的密度實在是太大了,甚至讓相對論的計算結果顯得有點荒謬。相對論預測宇宙變得非常緊密,空間又異常彎曲,最終達到了一個無限密度點。

按照相對論的觀點,宇宙在某種程度上確實有個開端,或者說至少有個「特殊時刻」。我們所看到的一切,包括所有空間,都來自奇異點。可惜的是,相對論不能告訴我們那一刻發生了什麼,但我們知道它與之後的任何時空點都不一樣。它就像一堵無法跨越的牆,無法用相對論解釋。

孰是孰非?

現代物理學的兩大支柱以大相逕庭的觀點來解釋可能的宇宙起源。一方面,量子力學告訴我們宇宙是永恆的,一直存在。另一方面,相對論告訴我們宇宙來自一個發生在一百四十億年前的無限密度點。

我們知道量子力學不可能完全正確,因為它沒有辦法描述關於宇宙的某些事。例如,量子力學沒有辦法描述重力或空間彎曲。但同時,我們也知道相對論並不完全正確,因為它在奇異點處崩潰,並且忽略了宇宙的量子性質。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

所有討論 2
天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
2

文字

分享

0
1
2
被吸進黑洞會怎樣?黑洞和一般的洞,哪裡不一樣?——《宇宙大哉問》
天下文化_96
・2022/09/24 ・2414字 ・閱讀時間約 5 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

如果我被吸進黑洞會怎麼樣?

很多人似乎都有這個疑問。

如果路上突然出現一個黑洞,會發生什麼事?圖/天下文化提供

「進入黑洞後會發生什麼事呢?」在許多科學書籍中都有提到,也是我們聽眾和讀者經常提出的問題。但是為什麼大家對這問題特別有興趣呢?難道公園裡處處都是黑洞?或是有人計畫在黑洞附近野餐,但又擔心放任他們的孩子在旁邊跑來跑去會發生問題?

可能不是。這個問題的吸睛度與實際上會不會發生無關,而是源自我們對迷人太空物體的基本好奇心。眾人皆知,黑洞是神祕莫測的奇怪空間區域,是時空結構中與宇宙實體完全脫節的「空洞」,任何東西都無法逃脫。

不過,掉入黑洞是什麼感覺呢?一定會死嗎?和掉進普通洞裡的感覺有什麼不同?你會在洞內發現宇宙深處的祕密,還是看到時空在你的眼皮子底下伸展開來?在黑洞裡面,眼睛(或大腦)能正常發揮功能嗎?

只有一種方法可以找到答案,那就是跳進黑洞。所以抓起你的野餐墊,和你的孩子說聲再見(也許是永別),然後牢牢抓緊,因為我們即將深入黑洞公園展開終極冒險。

讓我們跳進黑洞尋找答案吧!圖/天下文化提供

接近黑洞

當你接近黑洞時,注意到的第一件事可能是,黑洞確實看起來就像「黑色的洞」。黑洞是絕對黑色,本身完全不發射或反射光線,任何擊中黑洞的光都會被困在裡面。所以當你觀察黑洞時,眼睛看不到任何光子,大腦會將其解釋為黑色。

黑洞也是個不折不扣的洞。你可以將黑洞視為空間球體,任何進入黑洞的東西都會永遠留在裡面。這是因為已經留在黑洞內的東西所造成的重力效應:質量在黑洞中被壓縮得十分密集,進而產生巨大的重力影響。

為什麼?因為離有質量的東西愈近,重力愈強,而質量被壓縮代表你可以十分靠近質量中心。質量很大的東西通常分布得相當分散。以地球為例,地球質量大約與一公分寬(大約一個彈珠大小)的黑洞等同大小。如果你與這個黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣,都是 1g。

如果你與黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣。圖/天下文化提供

但是當你分別接近兩者中心時,會發生截然不同的狀況。當你愈靠近地球中心點,愈感覺不到地球重力。那是因為地球圍繞著你,把你平均的往各個方向拉。相反的,當你離黑洞愈近,感受到的重力愈大,因為整個地球質量近在咫尺的作用在你身上。這就是黑洞強大的威力,超緊緻質量對周圍事物立即產生巨大影響。

當你離地球中心越近,就越感受不到重力,但當你離黑洞中心愈近,感受到的重力卻越大。圖/天下文化提供

真正緊緻的質量會在自身周圍產生極大重力,並且在一定距離處,把空間扭曲到連光都無法逃脫(請記住,重力不僅會拉動物體,還會扭曲空間)。光不能逃脫的臨界點稱為「事件視界」,在「某種程度」上,事件視界定義了黑洞從何處開始,以此距離為半徑的黑色球體則稱為黑洞。

黑洞的大小會隨著擠進多少質量而發生變化。如果你把地球壓縮得足夠小,會得到一個彈珠大小的黑洞,因為在大約一公分距離內,光再也無法逃脫。但是如果你再壓縮更多質量,黑洞半徑就會更大。例如,你把太陽壓縮變小,空間扭曲程度更高,事件視界更遠,大約發生在距離中心點三公里處,因此黑洞寬度約六公里。質量愈大,黑洞愈大。

黑洞的大小會隨著擠進多少質量而發生變化。圖/天下文化提供

其實,黑洞的大小並沒有理論限制。在太空中我們已探測到的黑洞寬度,最小約有二十公里,最大可達數百億公里。實際上,黑洞形成的限制只有周圍環繞物質的多寡,以及所允許的形成時間。

當你接近黑洞時,可能會注意到的第二件事是,黑洞通常不孤單寂寞。有時你會看到周圍東西掉進黑洞。或者更準確的說,你會看到東西在黑洞周圍旋轉等待落入。

這種東西稱為「吸積盤」,是由氣體、塵埃和其他物質組成。這些物質沒有被直接吸入黑洞,而是在軌道上盤旋等待、螺旋進入黑洞。這景象對於小黑洞而言,可能不是那麼令人印象深刻,但如果是超大質量黑洞,確實值得一看。氣體和塵埃以超高速度飛來飛去,產生非常強烈的純粹摩擦力,導致物質被撕裂,釋放出許多能量,創造出宇宙中最強大的光源。這些類恆星(或稱類星體)的亮度,有時比單個星系中所有恆星的亮度總和還要高數千倍。

超大質量黑洞能釋放出許多能量,創造出宇宙中最強大的光源。圖/天下文化提供

幸運的是,並不是所有黑洞,甚至是超大質量黑洞,都會形成類星體(或耀星體,就此而言,像是吃了類固醇的類星體)。大多數時候,吸積盤並沒有合適的東西或條件來創造如此戲劇化的場景。這也算是一樁美事,否則的話,你一靠近活動劇烈的類星體,可能會讓你在瞥見黑洞之前就氣化了。希望你選擇落入的黑洞周圍有個漂亮的、相對平靜的吸積盤,讓你有機會接近並好好欣賞。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。