1

1
0

文字

分享

1
1
0

斑馬的條紋到底有什麼用?讓馬穿上外套破解百年謎題

果殼網_96
・2019/05/09 ・2000字 ・閱讀時間約 4 分鐘 ・SR值 490 ・五年級

這匹馬穿上了黑白條紋的外套是怎麼回事?以為穿了馬甲就認不出來了嗎?我們當然不會認錯,但那些總是圍著馬飛的馬蠅就不一定了。

Plos One雜誌最近發表了一篇新研究,試圖解開一個從達爾文時代起便困擾著科學家們的謎題:斑馬究竟為什麼長著條紋?答案可能並沒有我們想的那麼複雜──條紋能夠避免蟲子的叮咬。

百餘年近二十個假說嘗試解釋斑馬之謎

在過去的 150 多年裡,關於斑馬條紋之謎的假說有將近二十個。最普遍的說法是,條紋在自然界中起到了偽裝色的作用;也有說條紋造成對流,能夠幫斑馬在炎熱的環境中降溫;還有的說這獨特的紋理有社交功能,能讓斑馬在野外辨認出同伴。

但是,這些假設都被一個個推翻了──條紋偽裝對於獅子來說不太起作用,因為獅子視力並不好,在遠距離時主要是靠聽覺和嗅覺來發現獵物。​

-----廣告,請繼續往下閱讀-----
左方為人類視角,右方為獅子視角。(編按:稍早誤植,已修改 2019/5/9 18:15)

至於降溫,對斑馬和其他野生動物進行熱成像測量後發現,斑馬並不比身邊的其他動物「更涼爽」。那麼社交呢?事實上,純色馬可以通過臉和聲音來辨識彼此,並不需要依賴條紋。而且偶爾也會出現沒有條紋的斑馬,它們並不會被其他斑馬排斥。

只剩下條紋驅蟲一說。

為了證明這僅剩的一種假說,加州大學大衛斯分校的生物學家蒂姆.卡羅(Tim Caro)和同事們來到英國薩默賽特的一家馬場。在這裡,他們得以近距離地觀察純色馬和斑馬,以及嗡嗡飛的馬蠅。

馬蠅很少在斑馬身上多做停留

數蟲子不是一件容易的事。兩個研究員一左一右,站在距離馬兩米內的位置,用肉眼觀察,並用攝像機記錄下了馬和馬蠅的一舉一動,然後一幀一幀地分析錄影。他們發現,純色馬和斑馬吸引到的蒼蠅數量差不多,但是,真正停留在斑馬身上的蒼蠅要遠遠少於純色馬。這讓人有點費解。

-----廣告,請繼續往下閱讀-----

先來看看純色的棕馬。周圍的馬蠅盤旋、轉圈、逐漸減速,然後穩穩地降落在了馬身上,至少能停留 10 秒,最長能停 20 分鐘。

斑馬就不一樣了,大多數馬蠅直接飛過了它們,或者只短暫停留了不到一秒就飛走了。

「停留」這個詞用得還不夠準確,斑馬吸引到的這些蒼蠅幾乎沒有減速,直接撞了上去然後被彈開,像是走路不注意看路的人撞上了玻璃。

可見條紋是真的能驅趕馬蠅?研究員們還不敢妄下定論,因為影響馬蠅飛行軌跡的因素還有很多,比如說氣味、溫度、風速等。為了控制這些變數,研究員們又設計了一個實驗。

-----廣告,請繼續往下閱讀-----

給馬穿上不同的外套

他們給同一匹馬分別穿上白色、黑色以及條紋三種不同的外套,看看在同樣的時長內,究竟哪一種的驅蟲效果最好。

實驗結果應驗了之前的猜想,條紋又一次贏了。停留在條紋外套上的馬蠅數量,要遠遠低於白色或黑色外套上的。

但是外套只遮住了身體,頭部還是裸露著的。一隻穿著條紋衫的馬還是會吸引馬蠅,只是這些馬蠅在靠近的時候選擇調轉方向,停在光裸的馬頭上。

實驗結果讓研究員們得出一個結論:馬蠅在遠處並不能分清斑馬和純色馬,只有在靠近到一定距離時,黑白條紋才會開始發揮作用

-----廣告,請繼續往下閱讀-----

到底是什麼作用?科學家們猜想,黑白條紋會產生一種視覺錯覺,在馬蠅逼近時擾亂它們的運動模式,它們無法正常降落。

還有一種猜想聽起來更有趣:蒼蠅們在遠處時看不清斑馬,誤把斑馬當成了一個個黑色的物體,像是一排樹,牠們試圖從樹之間的縫隙飛過去。只有在靠近斑馬時,馬蠅們才意識到那是一個實實在在的物體,來不及刹車就撞了上去。

夏天來了,買件條紋衣吧(誤)

你也許會想,我這一輩子都見不到幾次斑馬,我知道它們條紋的奧秘有什麼用?科學家研究斑馬的意義是什麼呢?

一個重要的科技應用是自駕車。昆蟲有著不同尋常的視覺處理能力,給自駕車的人工視覺和碰撞檢測系統提供了豐富的靈感。現在我們已經知道黑白條紋對馬蠅的飛行活動是有影響的,那是否對自駕車的系統也有影響呢?自駕車的應對系統可以升級起來了。

-----廣告,請繼續往下閱讀-----

對養馬行業或者愛騎馬的人來說,這個研究也很有意義,可以考慮給馬和騎手定制條紋套裝,讓他們免受蒼蠅的煩擾。

對於我們普通人來說,這個研究給我們的實用啟示再簡單不過:給自己添兩件條紋T恤,畢竟夏天就要到了呢。

編按:沒想到很快就有新研究反駁這個說法啦!快看看這個世紀難題的新發展:舊問題舊假說的新研究:斑馬的黑白條紋有助降溫嗎?

參考文獻

  1. Associated Press. (2019). Why do zebras have stripes? The ages-old question may finally have an answer. The Washington Post.
  2. Caro, T., Argueta, Y., Briolat, E.S., Bruggink, J., Kasprowsky, M., Lake, J., Mitchell, M.J., Richardson, S. and How, M., 2019. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PloS one, 14(2), p.e0210831.
  3. How, M., & Caro, T. (2019). Zebra’s stripes are a no fly zone for flies. 

本文授權轉載自果殼網,原文標題:斑马究竟为什么长斑?一个困扰了科学家150年之久的谜题

文章難易度
所有討論 1
果殼網_96
108 篇文章 ・ 8 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
人類是少數能看見斑馬條紋的物種!人類的視力到底有多好?——《五感之外的世界》
臉譜出版_96
・2023/09/18 ・1882字 ・閱讀時間約 3 分鐘

長久以來,生物學家一直都在探討為什麼斑馬會有如此奇怪的黑白斑紋,直到他們談話的當下,卡羅依然在探究這個問題。他告訴梅林,其中最早出現、最廣為人知也令人意外的推測,是認為這些斑紋其實是斑馬的保護色。斑馬身上的黑白條紋毛色能夠擾亂掠食者(如獅子、鬣狗)的視線,讓牠們看不清楚斑馬的輪廓,也可以讓斑馬的身影融入周遭聳立的樹木之間,又能夠在斑馬跑動時讓其他動物感到視線模糊。

斑馬身上的斑紋在其跑動時會讓其他動物感到視線模糊。

但梅林對這些說法抱持著存疑的態度,她回想自己當初的反應:「我那時候表情應該很怪。我對他說:『大部分的肉食性動物都是在夜晚獵食,而且牠們的視覺根本不如人類靈敏,因此很有可能根本看不到那些斑紋。』」提姆這時驚訝地忍不住脫口而出:「什麼?」

斑馬紋隱身術

人類視覺處理細節的能力幾乎比其他任何動物都來得好;梅林也發現,正是因為這種特別敏銳的視力,人類才成了少數能夠看見斑馬條紋的物種。她和卡羅找了個光線明亮的日子,計算出擁有絕佳視力的人類能夠在一百八十二公尺左右之外的距離就分辨出斑馬身上的黑白條紋,獅子則得拉近到八十二公尺左右的距離才看得出來,鬣狗更是要到四十五公尺左右的距離才看得清楚。一旦到了掠食者最常打獵的黃昏或清晨時分,牠們則得再拉近約莫一半的距離才能看見斑馬身上的紋路。

所以梅林的想法沒錯:斑馬身上的條紋不可能是牠們用來匿蹤的保護色,因為掠食者都得靠得很近才看得到這些紋路,然而假如真的距離這麼近,這些天生的獵人早就聽見或聞到斑馬的蹤跡了,實在無需仰賴視力。在肉食動物與斑馬平時間隔的距離之下,這些紋路其實根本都融成了一片灰濛濛的顏色;對正在打獵的獅子來說,斑馬看起來跟驢子其實也沒什麼不同。

-----廣告,請繼續往下閱讀-----

人類其實視力超好的?

動物的視覺敏銳度以單位視角週期數(cycles per degree)為測量單位——這個概念剛好可以用剛剛的斑馬條紋來做例子。各位伸出手臂並豎起大拇指,你的指甲大約可以代表一單位視角;以你的手臂為距並涵蓋四周三百六十度的距離範圍來說,各位應該可以在指甲上畫了六十至七十條黑白條紋的情況下,依然辨識得出黑白條紋之間的區別。因此人類視覺敏銳度的單位視角週期數便約為六十至七十;目前的最高紀錄是來自澳洲的楔尾鵰(Aquila audax),牠們的視覺敏銳度之高,單位視角週期數高達一百三十八。

楔尾鵰擁有動物世界中最細的光受體,這也使牠們的視網膜裡可以密密麻麻地塞滿大量光受體;有了這些細窄的感光細胞,楔尾鵰敏銳視力的畫素大約是人類的兩倍,也因此可以在大約一點六公里之外的距離看見小小一隻大鼠。

然而老鷹和其他猛禽卻是少數視覺比人類敏銳得多的物種。感官生物學家愛倫諾.凱福斯(Eleanor Caves)搜羅了上百種動物的視覺敏銳度,發現人類的視力幾乎超越了所有物種。除了猛禽以外,就只有其他靈長類動物的視覺敏銳度能與我們比肩了。

人類的視力幾乎超越了所有物種。圖/pixabay

各種動物的視覺敏銳度以單位視角週期數表示如下:章魚為四十六、長頸鹿為二十七、馬為二十五、獵豹為二十三,視力表現還算不錯;而獅子卻只有十三,僅略高於人類法律中定義為全盲的單位視角週期數:十。然而其實除了上述物種之外,大部分動物的視覺敏銳度都低於人類視為全盲的門檻,其中包括半數的鳥類(令人意外的是,蜂鳥和倉鴞都在此行列之中),大部分的魚類與所有昆蟲;例如蜜蜂的單位視角週期數竟只有一,這也就表示你伸出去的那隻大拇指在蜜蜂眼裡就代表著一個畫素,至於拇指上畫的其餘細節在牠們眼中都是一團模糊。另外還約有百分之九十八的昆蟲視力比這還要更弱。

-----廣告,請繼續往下閱讀-----

凱福斯說:「人類真的很怪。我們的其他任何感覺根本連摸都摸不到可以稱為頂尖的邊,卻唯獨在視覺敏銳度上傲視群雄。」矛盾的是,人類雖有優良的視力,卻也因此失去了能夠欣賞其他環境界的視野,因為「我們以為自己看得到的,其他物種一定也能看見;認為那些對人類來說顯而易見顯眼的事物,對其他動物來說也一定難以忽視。但實際上卻並非如此。」凱福斯如此說道。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

1

22
2

文字

分享

1
22
2
塞車好心煩!自動駕駛能解嗎?——台大資工林忠緯專訪
科技大觀園_96
・2021/02/08 ・4673字 ・閱讀時間約 9 分鐘 ・SR值 526 ・七年級

每到年節時期,不管返鄉或是出遊,用路人最討厭遇到的就是塞車,漫長的等待、讓人踩剎車踩到腳痛的行車速度,抑或是被汽車廢煙包圍的感覺,本是愉悅心情恐怕都大打折扣。你也是恨不得讓「塞車」這個詞消失在這世界上的人嗎?自動駕駛或許能幫你達成心願喔~感到好奇的話,那就繼續看下去吧!

造成塞車的幕後黑手是誰?

試想,人類與機器人在駕駛汽車時,要維持車與車之間等速前進,誰會 hold 得最好呢?答案很明顯是……機器人!為什麼呢?關鍵就在於「人類的反應速度」,反應速度因人而異:當老(手)司機在開車時,他們能夠對於哪時候該踩剎車、油門的反應速度快,因此不會因誤判與前車之間的距離,而落下一大段「空白車距」;然而菜鳥司機就不一樣了,他們反應速度沒有老(手)司機快,所以在看到前方車輛時,因無法正確判斷哪時候踩剎車最恰當,加上基於安全意識都會先減慢避免 A 到前車為第一反應,「空白車距」自然就出現了~而後方的車輛們會因為這位菜鳥司機(老鼠屎)的行車速度減慢而開始擠成一團,造成塞車。

相信駕駛人們遇到塞車的反應都跟圖片中的人一樣煩悶不堪。圖/GIPHY

相反地,當機器人在行車時,因為他們的動作程序一致,因此能穩穩地維持等速行駛。這也就是為何現今車廠想推出自動駕駛車(以下簡稱「自駕車」)的原因之一。自動駕駛真有那麼神嗎?讓我們來一一剖析它吧!

延伸閱讀:連假無法逃離宿命!為什麼會塞車呢?

自駕車大小事

自動駕駛,顧名思義就是讓車子在無人為操作的情況下,將行車速度與控制車間距離等原本需要手動操控車子行進的動作轉為自動化,以減輕駕駛人的行車負擔。

  • 自動駕駛分級:

自動駕駛可是也有分級制度的!國際汽車工程師協會 (Society of Automotive Engineers, SAE) 依據汽車的自動化程度分為以下級別:

-----廣告,請繼續往下閱讀-----
參考資料:SAE International

時至 2020 年末,汽車業的自動駕駛即將發展至第四級,第五級則是各企業競相達成的最終目標。

  • 自駕車的配備主要有哪些?
    • 感測器:相當於人類的眼睛,能辨識障礙物的種類及位置。而感測器又可分為攝影機(Camera)、光達(LiDAR)、雷達(Radar)、超音波這四種,不同種的感測器對於環境辨識及障礙物解析力也會有差異。
    • 動態定位:相當於 Google 地圖功能,當接收來自感測器的環境資訊後,自駕車能協同 GPS、IMU 與高精準地圖資訊等定位工具自動辨識車輛所在位置及設定目的地。
    • 智慧決策:相當於人腦的決斷力,透過整合電子地圖 (RNDF/OpenStreetMap)、感知融合(Perception)、靜態軌跡規劃(Mission Planning)、行為規劃(Behavior Planning)以決定自駕車整體需執行哪些動作及規劃。
    • 電控底盤:負責車子的轉向、剎車及油門。

參考資料:自駕車發展趨勢與關鍵技術

自駕車能透過感測器偵測車距以維持車與車之間最佳距離。圖/GIPHY

自動駕駛真的能解決塞車嗎?

自駕車本身雖能達到自動辨識路口標誌及安全煞停系統,但它就像一個好的食材,需要透過精湛的廚藝及調料的輔助才能發揮它最完美的風味,而輔助自駕車的便是「車聯網」。究竟什麼是「車聯網」?自駕車與車聯網的搭配真的能解決塞車嗎?就讓台大資工系的林忠緯教授來幫大家解惑吧!

林忠緯教授熟知自駕車與車聯網的研究。圖/轉自科技大觀園。

林忠緯教授小檔案:
林忠緯教授在博班時期的研究題目即是關於 Cyber-Physical System(CPS)的研究,而 CPS 簡單來說是指能夠執行物理層面上動作的電子產品,例如車子(能在路上行走)、心律調節器(能放電控制心律)都屬於 CPS。林教授在博班的研究即是關於車子的 CPS,也曾在美國通用汽車(General Motors)實習,畢業後持續拓展自己所長,進入加州矽谷的豐田汽車(Toyota InfoTechnology Center)擔任研究員。林教授熟知自駕車與車聯網的研究,自身也致力於自駕車、車聯網與資安問題的研究,並開心表示對於未來 28 年後自駕車的展望懷抱深深的期許。

  1. 車聯網是什麼?
    車聯網(Internet of Vehicles,IoV)是指車與車之間(vehicle-to-vehicle,V2V),或車與道路狀況(Vehicle-to-everything, V2X)之間利用網路互相交換、接收感測器所會彙整出的訊息,以達到更完善、迅速的交通網絡資訊交流,讓用路人能即時獲得路況的整體資訊。
車聯網就是車子版本的物聯網。圖/Pixabay
  1. 自駕車結合車聯網真能解決塞車嗎?
    若要剖析塞車問題,其實可以分成以下幾種狀況,自駕車必須面對各種塞車情況作出相對應的解決方案。
    1. 選擇路徑:假如過年走春行程是去宜蘭玩,大家通常會想到要走雪隧,然而當大家都走雪隧的話,勢必會造成大塞車。而車聯網能即時追蹤到已經開始塞車的道路,並通知自駕車可以改走較為不塞車的路段(例如北宜),這時候就達到了疏散車流量的效果。
    2. 路口與路口間的交通號誌:假如今天車子走在路上,一路都是綠燈當然令人心情愉悅,反之,則會導致後面開始塞車,因此在車聯網當中也可以整合總體交通號誌的順暢運行。
    3. 單一路口的車輛運行:通常遇到駕駛人遇到路口,都需先放慢行駛速度,觀察轉角方向是否有來車,再行通過;當一個路口車多時,塞車肯定逃不掉~而車聯網能達成上述第二點的升級版——便是不用交通號誌!車聯網就像是開上帝視角,可以同時獲得路口的各道路資訊,而這些資訊是單一自駕車無法自行偵測的,自駕車針對這些資訊做出相對應的動作,而自駕車對於這些動作的控制能比駕駛人更加精準,因此車聯網與自駕車能夠相輔相成增加路口的運行效率。
    4. 單一車輛的運行:車聯網與自駕車亦能互相搭配在安全的前提下縮短跟車距離並減少過度保守的煞車,如此道路的使用率能夠提升,也能減少塞車的機率。
自駕車結合車聯網能達成無須紅綠燈,路口間也能順暢行駛。圖/GIPHY

林教授認為自駕車結合車聯網勢必能解決部分層面的塞車問題,也能避免酒駕、恍神、視線死角等人為意外肇事的發生比率,但在現實生活要自駕車能實際放在道路上跑,現階段仍面臨重重難關。

  1. 自駕車的發展現階段會遇到哪些瓶頸?
    讓我們想像一下,當自駕車、車聯網已完全取代所有的交通系統,實際上最有可能會發生以下幾種瓶頸:
    • 瓶頸一:自駕車的整合系統尚未完善
      林教授個人認為目前自駕車的整合系統會是一大問題,即便供應商提供再好的車組配件,配件與配件之間的整合系統不佳還是會造成車子載運行時效率不佳甚至還可能會釀成車禍,或是遭駭客入侵自駕車系統。所以教授認為設計一個具縝密規畫的整合系統,不僅可以讓車子運行順暢,也能保障駕駛人的安全。
    • 瓶頸二:法規訂定的難題
      當自駕車發生車禍了,那誰該跳出來負責任呢?該怪自駕車內部的機器學習沒有收納進這些意外狀況的數據嗎?還是都是工程師的錯?其實這也是自駕車衍伸出的頭疼題,而林教授針對這個問題也提出相關建議,例如在購買自駕車時,售價的一部分可以作為保險補償,當發生意外時,便能獲得補償金。
    • 瓶頸三:消費者的接受程度
      消費者在購買商品時常會考慮價格及使用感受,而自駕車雖然目前製造成本高昂,但相信未來隨著自駕車的研發技術逐漸成熟,成本也會隨之下降,但成本要降到多低才能達到量產,以及售價普遍是消費者能接受的範圍仍是個問題。另外,感受度的部分,當我們坐進自駕車裡面,由於自駕車可以精準縮小車距,因此當對向來車很近地迎面衝過來,真的不會嚇到嗎?因為自駕車有別於以往的行車感受,所以也不見得能被所有消費者接受。
      另外,有部分消費者享受自己駕馭車子的樂趣,所以他們也不會想使用自駕車,當道路上並非統一是自駕車的情形,要達成車聯網更是難上加難哪~
    • 瓶頸四:資安問題
      自駕車結合車聯網運行時極需網路,而有網路的地方,駭客便如影隨形,當駭客像電影情節一樣駭入車聯網時,不但會構成駕駛人的性命威脅,甚至還會造成全面性的交通世紀大癱瘓!水能載舟亦能覆舟,車聯網雖能讓交通運行更順暢,也可能會釀成一場可怕的災難,因此林教授強調維護資安也是設計車聯網的重點項目。

解決塞車問題的理想藍圖

當我們檢視塞車問題的視野再拉遠一點,除了自駕車及車聯網以外,教授也慷慨地分享了以下管道解決塞車問題:

-----廣告,請繼續往下閱讀-----
  • 共享汽車:當大家都選擇搭乘共享自駕車,便能減低車流量與車子的總量(大家更傾向不買車),路上的車子少了,便能減低塞車的發生率。(傳染病盛行的時代不太適用)
  • 道路擴大:當車子的總量下降,停車需求減少,空間使用更有彈性。當道路新增了好幾條線,便能分散車流,避免全部車子堵在同一條路上。
  • 網路通訊:現在網路科技發達,人們在家也能透過網路完成視訊會議、參與活動,減少出門的必要性,也就無須駕車。

結語

雖然現階段自駕車要完全解決塞車問題仍需經時間歷練,但相信透過林忠緯教授及眾多研發單位的辛勤貢獻,大家在春節期間能夠利用自駕車與車聯網享受更加順暢、迅速的行車體驗,而不再受塞車之苦的日子指日可待!新春期間,也祝大家行車平安,旅途別塞!

塞車問題仍需大家共同努力解決,才能營造良好的交通網絡。圖/GIPHY

參考資料

  1. 「自駕車受騙上當和辨識盲點」之專家回應
  2. 為何美國交通部選用SAE的自動駕駛分級,而棄NHTSA丨汽車商業評論
  3. 自動駕駛車發展現況與未來趨勢
  4. 何謂自動駕駛?
  5. 關於自動駕駛:內行人才會懂的有話直說
  6. 對於塞車問題,智慧交通提供的四大解決方案
  7. 塞車讓駕駛踩煞車踩到抽筋,汽車新科技解決這困擾!(內有影片)
  8. 2020 最新自動駕駛技術報告出爐!以特斯拉、Volvo 為例,全面涵蓋智駕技術
  9. 網宇實體系統與製造應用- 熱門焦點- 經濟部技術處
  10. Wevolver: Knowledge for engineers
  11. 一起來用十分鐘略懂自駕車吧!GoGoGo!
  12. 無人駕駛車/自駕車技術探索
  13. SAE International
  14. 科學月刊:不需駕駛也能輕鬆上路-淺談自駕車與高精地圖
所有討論 1
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。