0

2
1

文字

分享

0
2
1

燈具不只照得亮,更要照得漂亮,照明系統的「演色性」有什麼用?

活躍星系核_96
・2019/04/12 ・3042字 ・閱讀時間約 6 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/潘炯丞

照明有兩個基本的目的:第一個是照亮物體,讓人看得清楚;第二個是還原物體本色,讓東西看起來漂亮。

譬如,夜間的街道照明,因為牽涉到交通安全,看得清楚就遠比看得漂亮得得重要;另一方面,精品珠寶店的展示櫃照明,為了讓產品更具有吸引力,看起來漂亮就會比節能或是看清楚來得受重視。

究竟要怎樣才能判斷一個光源是否照得漂亮呢?source:pixabay

衡量一個照明系統或是光源能否清楚照亮物體,照明工程師會使用亮度相關的參數來評估,包含光通量(luminous flux)、輝度(luminance)與照度(illuminance)。一般人消費者選購檯燈或是燈源的時候,也可以從這些參數來選擇,例如兒童使用的學習檯燈,光通量最好大於 500 流明,桌面的中心最大照度最好有 750 勒克斯以上。

但是,你知道如何評價一個照明系統或是光源能否把物體照得漂亮嗎?或許你曾經聽過演色性(Color Rendering Index,一般縮寫成為 CRI 或是 Ra)這個名詞,它就是目前照明業界最常用來評價燈源或是照明系統能否把物體照得漂亮的主要參數。那麼,演色性是什麼意思? 一般消費者應該怎麼理解這個參數? 在實際應用上演色性又有什麼限制呢?

八個標準測試色票,決定演色性高低

在1965 年,國際照明委員會 CIE(International Commission on Illumination)制定了 CIE Test-Color Method,以便有個一致的方法來評價光源對於色彩的「表現能力(color rendering)」。

-----廣告,請繼續往下閱讀-----

這個方法選定了八個顏色做為標準測試色票(test-color sample),藉由比較八個色票在受測光源與標準光源照射下的色度座標偏差,計算出 R1~R8 等八個演色性指標,再計算這八個演色性指標的平均值,即可得出 CRI 數值。CRI 的數值介於 0~100 之間,如果受測光源的色彩表現能力越接近標準光源,CRI 的數值就會越高。

CRI量測所使用的八個標準色票與六個特殊色票

由於 R1~R8 這八個標準色票主要是偏淡的不飽和顏色,為了讓色票取樣更具代表性,因此 CIE Test-Color Method 定義了另外六種特殊色票,包含紅色、黃色、綠色與藍色等四個飽和色,分別為 R9~R12,以及白人膚色(R13,Light yellowish pink ,Caucasian complexion)與橄欖綠(R14,Moderate olive green,leaf green)等兩個特殊色。其中,R9 代表飽和紅色,與膚色的表現有關,所以照明行業在評價演色性的時候,除了 CRI 之外,也會特別考慮 R9 的高低。

然而 CRI 僅僅比對光源在八個顏色的色彩表現能力,以整個光譜來說,是很少的取樣數量,因此有其侷限性。特別是針對 LED這一類的窄頻譜光源(narrow band spectra),單純以 CRI 作為色彩表現的評價,就會有所偏差(註一)。依據美國照明工程學會(IES,Illuminating Engineering Society of North America)的建議,對於 LED 光源的顏色評價,還是應該以實物模型(mock-up)的展示較具參考價值。

演色性的計算方式有哪些限制?

從 CRI 的計算方式,可以發現它有一些明顯的限制。

首先,它是八個數值的平均,因此可能出現某個燈源對於特定顏色的表現能力不佳(亦即某個 Ri值特別低),但平均之後的 CRI 卻是高的。其次,CRI 測量時所使用的八個色票都是不飽和的顏色,這會造成一個無法展現鮮豔飽和色彩的光源,卻可以測出很高的 CRI。

-----廣告,請繼續往下閱讀-----

此外,CRI 量測方法裡,對於任何偏離八個標準色票的色度空間移動,都是給予負面的評價,也就是扣分。但由於 CRI 的八個色票均為不飽和色,如果有一個光源可以讓物題呈現更加飽和鮮豔的色彩,雖然這會是人眼比較偏愛的方向(我們多數情況下喜歡鮮豔飽和的顏色、而非黯淡的色彩),但是在 CRI的評價方法上,卻會得到比較低的分數。

source:pixabay

CRI演色性的替代方案

由於 CRI 衡量光源色彩品質的方法有上述的幾個缺點,幾十年來各國際標準組織與照明業界試圖尋求新的光色品質評價方式。從 1967 年開始,目前總共創造出不下十種的光色彩展現能力指標(註二)。在這些指標中,由美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)所開發的光色品質量表 Color Quality Scale (CQS)是目前除了 CRI 之外,比較被學界與業界認可的評價方法。

計算CRI所使用的八個非飽和顏色色票。source:nist

CQS 與 CRI 的量測方式,主要差異在標準色票的選擇。CRI 最受爭議的是它採用色票都是非飽和顏色,因此 CQS 改採十五個飽和度較高的顏色做為標準色票,這樣的調整,使得 CQS 更加適用於新興的固態照明市場、也更加符合人們對於飽和鮮艷顏色的偏好。

光色品質量表Color Quality Scale (CQS)所使用的十五個飽和顏色色票。source:nist

雖然 CRI 仍有許多改進的空間,也不盡然適用於 LED 燈源,但是照明業界仍舊偏好單一數值的評價方式(只看一個數字就知道光線的顏色表現能力好不好,並不精準,但是簡單好用),同時也不希望新的評價方式改變了既有燈源的評價分數,因此 CRI 至今仍是唯一受到國際組織與照明業界認可的光源色彩評價方法。

-----廣告,請繼續往下閱讀-----

跑個題,演色性高低與護眼有關係嗎?

從演色性的定義我們可以知道,該數值的高低主要關係受測光源或是燈具對於八種特定顏色色票的顏色再現能力,數值高代表光線越能呈現物體的真實顏色。那麼,呈現物體的真實顏色可以保護眼睛嗎?

答案是,兩者沒有關係。

光線影響眼睛健康的因素主要與亮度、頻閃、還有藍光危害有關。照明不夠亮,睫狀肌需要用力、人眼容易疲勞,同時長期下來眼軸會因此增長,導致近視發生。頻閃嚴重的燈具可能引發使用者頭痛、甚至癲癇發作的可能。至於藍光危害則可能造成視網膜的黃斑部受損。以上三者是影響眼睛健康的主要因素,至於演色性,只和光線的顏色展現能力有關,與眼睛健康沒有關係。

高演色性的光源主要使用於博物館照明或是需要對色、校色的工作場所,例如攝影與出版行業。source:pixabay

高演色性的光源主要使用於博物館照明或是需要對色、校色的工作場所,例如攝影與出版行業。在這些情況下,通常會要求 CRI 90 以上的光源,至於一般生活中,我們很難察覺到不同的照明光線所造成的物體顏色差異。例如,我們不會明顯察覺到一件洋裝在戶外陽光(CRI 100)下的顏色與辦公室照明(CRI 80)下的顏色有所不同。

但是,即使是一般的閱讀,光源呈現的物體顏色的能力如果不佳,仍舊會影響閱讀的感受,所以美國能源之星(Energy Star)就規定 LED 燈具的 CRI 需要高於 80,同時 R9 應大於零。那麼,如果拿 CRI 90 以上的燈源來閱讀,會比 CRI 80 有更好的體驗嗎?一般人的感受或許不明顯,對於色彩比較敏感的人可以察覺 CRI 90 的光線偏紅,而 CRI 80 的光相比之下則沒那紅。事實上我們長久以來慣用的螢光燈管,它的 CRI 一般介於 80~85 之間,而戶外陽光的 CRI 則是 100,但是一般人並不會意識到兩者對於顏色展現的差異。

-----廣告,請繼續往下閱讀-----
色彩本身是連續、而且豐富多變。source:pixabay

色彩本身是連續、而且豐富多變的,僅僅使用單一 CRI 的數字來表達一個光源的頻譜特質,本身就是有侷限性的。因此,CRI 的數值可以參考,但是想知道一個光源的色彩表現能力,還是眼見為憑。如果真想追求光源的高演色性,在陽光下閱讀是個好選擇。回到室內,CRI 高於 80 的光源就夠用了。但是,如果想要保護眼睛,更重要的考量應該是夠亮、不頻閃,還有低藍光的光源。

  • 註一: Rationale of Color Quality Scale (2010) by Yoshi Ohno , Wendy Davis
  • 註二:The Lighting Handbook, 10th edition, Illuminating Engineering Society of North America, Table 6.7 Indices of Color Rendition. P6.24
文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
3

文字

分享

0
8
3
解析黑洞的種類與結構!——黑洞旅行團,出發!(中)
ntucase_96
・2021/12/19 ・2978字 ・閱讀時間約 6 分鐘

  • 撰文/劉詠鯤

本文轉載自 CASE 科學報黑洞旅行團,出發!(中)–黑洞種類與結構

各位旅客好,在上一篇行前通知<黑洞旅行團,出發!(上)>文章中,我們介紹了本次旅行即將探訪的目的地:黑洞,它附近龐大的重力,會造成光線極度的扭曲,形成各種在地球上從未見過的獨特景象。現在就讓我們出發前往這趟旅程的目的地:CASE 星系中心的超大質量黑洞。

天文学, 明亮的, 星座, 黑暗的, 勘探, 星系, 光, 夜晚, 行星, 天空, 繁星点点, 星星, 宇宙
宇宙中有著數以億計的各式天體,其中也包含了大大小小的黑洞。圖/Pixabay

「航行天數 3915 日:鄰近麒麟座 X-1 黑洞。」

「各位沉睡許久的旅客,請活動活動筋骨,和我一同用 X 光望遠鏡,向外看去。在各位視線中有個非常明亮的光點,那裡便是距離地球最近的黑洞:麒麟座 X-1,距離地球約 3000 光年。由於它附近環繞物質的劇烈高速運動,彼此互相摩擦後形成極高溫的區域,而放出強烈的 X 光。」

「在廣大的宇宙中,分布著無數的黑洞,其質量分布差距非常大。從數十個太陽質量的恆星級黑洞,一直到數十億太陽質量的超大質量黑洞都存在。前者的體積小,數量也相對較多,在星系裡四處分布著;後者則是巨無霸,通常只會出現在星系的中心。」

-----廣告,請繼續往下閱讀-----

「導遊!為什麼我們要將目的地設在數量十分稀少,且距離地球十分遙遠的超大質量黑洞呢?好不容易來到這個 X-1 黑洞,何不把我們的親近黑洞行程安排在這?」

「因為恆星級別的黑洞,它附近有非常狂暴的『潮汐力』,會撕碎任何意圖接近它的傢伙!」

潮汐力是什麼?

黑洞是由非常龐大的質量壓縮在一個極小的區域所形成,舉例來說,要形成黑洞,要將太陽的質量壓縮在約台北市大安區大小的區域[1]。龐大的質量貢獻了極強的重力;十分緻密的分佈,則導致黑洞附近極大的重力變化。當我們站在地球上時,會感受到重力(地心引力)的作用;而且由於重力與距離平方成反比,我們距離地球越遠,受到的重力會越小。因此,準確來說,當我們站在地上,我們腳所受的重力其實會比頭所受到的力稍稍來的大,只是這個「稍稍」我們完全感覺不出來(如圖一)。但是在恆星級別黑洞附近則不是這麼回事,由於龐大的質量集中在很小的區域,在靠近該黑洞表面時,頭到腳這樣的距離就足以產生非常明顯的重力差距,大到可以將各種物體直接撕裂。這種力由於是因為某一物體兩端所受重力大小不同所造成,和潮汐的成因相似,因此又被稱為「潮汐力」。

圖一、潮汐力成因示意圖(未按比例繪製)。地球附近之重力場較為均勻,頭與腳所受的重力大小差距並不明顯。但在恆星級黑洞附近,頭與腳所受力有明顯差異,人會被拉長,因此也稱作「義大利麵效應」。

「航行天數 20xxx 日:目的地就在您的正前方」

-----廣告,請繼續往下閱讀-----

「各位旅客午安,請大家往窗外看(圖二),外面明亮具有光環的天體,便是我們這趟旅程的目的地。」

圖二、具有自旋的黑洞附近景象模擬圖。來源:筆者電腦模擬

黑洞的特徵

「黑洞看起來都長得差不多,它們有什麼特徵嗎?」

「如同看到一隻可愛的狗,我們會依照牠的毛色、體型、五官等等特徵加以分類:這隻是黃金獵犬,那隻是邊境牧羊犬…。那黑洞該如何分類呢?黑洞其實是個單純的天體,儘管它吞噬、吸收了各式各樣的物質,但最後都只化成三種特徵:質量、角動量以及電荷,或是白話一點說,就是他吃了多少東西、轉得有多快、帶有多少電。這便是著名的『黑洞無毛定理』,描述黑洞就像個光禿禿的球,表面不帶有任何複雜的資訊,所有吞噬的物質,最終都轉化成這幾種特徵。不同種類的黑洞,由於其扭曲周圍時空的方式不一樣,因此會使得周遭景色出現差異。」

「黑洞外圍可以大致分為數個區域[2],請各位看向這張圖(圖三)。最靠近黑洞的地方有一圈被稱為「事件視界」的邊界,這個邊界是一個絕對的單向道,任何事物只要進入事件視界,便會被龐大的重力吸入黑洞中心,即使連光也無法逃離。因此,有時候事件視界也會被稱作是黑洞的表面。」

-----廣告,請繼續往下閱讀-----
圖三、黑洞附近的結構示意圖。來源:筆者修改自 ESO 原圖。

「那黑洞裡面有什麼?」

「有趣的是,根據目前的物理理論,黑洞裡什麼都沒有,他所吸收的全部質量,全部都集中在正中心一個被稱為『奇異點』的地方。由於在極小的區域擁有極大的質量,現存的物理理論在那無法適用,是目前最前沿的物理研究感興趣的地方。如果要說那裡有什麼,我想肯定會有一群物理學家吧!」

「如果我們從事件視界往外走,會碰到『光子球層(Photon Sphere)』。當光靠近黑洞時,路徑會被曲折、彎向黑洞,在這個半徑上,重力大小恰好將光的軌跡彎曲成環狀,使得光就如同人造衛星環繞著地球一般前進。但這個軌道十分不穩定,任何擾動都可能使光落入黑洞或逃至外太空。有趣的是,若是各位前往此處(當然實際上無法,請別這麼做!),由於光線會繞著黑洞前進,因此你背後的光會繞黑洞一圈來到前方,也就是你可以直接看到自己的後腦勺!」

「若是我們再向外走,就會來到物質的最內穩定軌道,從此處向外,黑洞龐大的重力吸引著無數的物質環繞著黑洞運行,形成如同土星環般的盤狀構造,我們稱其為『吸積盤』。這裡各種物質以十分高速環繞黑洞運行,它們彼此之間的相互摩擦,會產生極高的溫度,而放出強烈的光…」

-----廣告,請繼續往下閱讀-----

「感謝各位參與我們的黑洞旅行團,由於時間限制,今天的導覽行程就到此暫告一段落。我們這次從一個俯瞰的視角,了解黑洞附近的結構。下一個行程,我們則要想像自己化身為一道光,從遠處向著黑洞方向前進,看看最後會落入黑洞,陷入一片漆黑?或是順利逃離黑洞引力束縛,奔向附近絢爛的星系?甚至是恰到好處的進入光子球層,在黑洞附近不知疲憊的繞圈圈?這些不同的光線,組成了黑洞附近特殊的景象,也將是我們下一篇文章的重點:黑洞光線追蹤。有興趣的旅客,請盡速預約行程。」

延伸閱讀

本系列文章:
黑洞為什麼不黑?彎曲的光與重力透鏡——黑洞旅行團,出發!(上)
巨大的黑洞反而不危險?——黑洞旅行團,出發!(中)
怎麼模擬出真實的黑洞樣貌?光線追蹤技術——黑洞旅行團,出發!(下)

註解

參考資料

ntucase_96
30 篇文章 ・ 1352 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

0
1

文字

分享

0
0
1
才、才不是在裝文青呢,在咖啡廳工作真的能激發創造力!──《哇賽心理學》
哇賽心理學_96
・2018/03/20 ・2080字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

作者/潘怡格 主編/蔡宇哲(哇賽心理學 創辦人兼總編輯)

隨著暢銷小說《哈利波特》迅速風靡全球,書迷們也非常關心作者J.K.羅琳到底是從哪裡來的靈感,可以寫下這麼生動的故事。根據羅琳的自我介紹,她常在英國愛丁堡的一間咖啡館寫作,慢慢的勾勒出霍格華茲這個充滿想像力的奇幻世界。

其實不只羅琳,還有許多的文學家,例如波特萊爾、海明威、沙特、西蒙波娃等,都喜歡聚集在咖啡館。這到底是一種時尚潮流?還是咖啡館真的有一種魔力,可以提供人們創作的靈感?

source:Pexels

-----廣告,請繼續往下閱讀-----

根據心理學和神經科學家對創造力的研究,發現光線和空間是很重要的影響因素,許多咖啡館的環境確實蠻符合研究中所提到的幾個條件。

實驗一:光線越昏暗,越有創意

德國心理學家安娜.史泰德爾(Anna Steidle)與她的團隊想知道「調整房間的明暗程度,會不會讓人們有更好的創造力與工作表現。」

因此,他們設計了一個實驗,邀請40個大學生,並依照房間燈光將其分成「明亮組」與「昏暗組」,在進入實驗之前會跟學生說「你正前往一個未知的星球,即將面對的是一個與地球截然不同的世界」,接著給他們 7 分鐘的時間畫出一個外星人的圖案。

評分者會依據圖案整體的創新程度,跟地球生物的相似程度、特徵的非典型程度(例如:有五隻腳、眼睛會發出雷射光)等三個面向給予分數。

-----廣告,請繼續往下閱讀-----

實驗結果發現,昏暗組的那些人所畫的外星人有較多的非典型特徵,也比較不像一般的地球生物,因此在整體的創新程度比明亮組表現得更好。研究者認為適當的昏暗可以激發人們創意潛能,尤其是在執行需要靈感的工作時。

但是,為什麼昏暗的燈光可以激發創意呢?

安娜.史泰德爾為了找到答案,又進行了一系列的實驗,他們利用調整房間的明暗度,請參與者評估自己感到自由的程度。評估結果發現,昏暗容易讓人有一種不被拘束的感覺,而且昏暗組在答題時,比起正確率反而更在乎速度快慢,暗示著昏暗的環境讓人有更想探索的欲望而較不擔心犯錯,這樣的心態能使創造力更容易發揮出來。

這樣聽起來,太明亮的地方是不是不好呢?雖然明亮的光線對創造力沒有明顯影響,卻有利於我們做分析和評價的相關思考,因為不同於昏暗組,明亮組更在乎的是答題正確率的表現。

-----廣告,請繼續往下閱讀-----

圖/作者提供。

實驗二:天花板越高,思考越自由

除了燈光之外,行銷學家瓊.麥爾斯李維(Joan Meyers-Levy)和朱瑞(Rui Zhu)也做了一個實驗,想瞭解空間高度會不會影響人們的思考和行動方式。

source:pxhere

研究者將實驗的參與者依照房間天花板的高度,分為「挑高組」(3.1公尺)與「一般組」(2.48公尺),在實驗室的天花板掛上燈籠,目的是為了引導參與者的視線往上看,以便讓他們有機會目測天花板的高度,接著開始進行解字謎的遊戲。

-----廣告,請繼續往下閱讀-----

結果發現,「挑高組」在解答與「自由」相關的字詞(例如:解放、不設限)上速度快得多;但是,一旦字謎是與「限制」相關的字詞時(例如:約束、矜持),情況恰恰相反,會變得比較慢。

另一個實驗則要求參與者從10項不同的運動清單中,找出相同之處。結果,挑高組比一般組舉出更多的共同點,且這些共同點本質也較為抽象。因此研究者認為:「挑高的天花板讓參與者的心裡感受比較自由,使得思考能更抽象且具有創意。」

圖/作者提供。

心理學給你的建議:利用昏暗與挑高的天花板,激發創作靈感

綜合上述研究,可以發現人的思考多少會受到環境影響,適當的昏暗與挑高的天花板,會讓我們的思考更自由,進而激發創作靈感,明亮的燈光則適合處理需要高度專心的任務。

-----廣告,請繼續往下閱讀-----

由此可知,咖啡館的盛行不是沒有原因的,除了滿足飲食的生理需求及流行的追求外,挑高的天花板及昏黃的光線,不知不覺中也能滿足需要創意與靈感人士的需求。

在家中,我們很難擅自調整天花板的高度或是燈光明暗,因此心理學給你的建議是,下次需要靈感的時候,不妨找一間空間寬敞、燈光朦朧昏暗的咖啡館,慢慢累積創意的養分,培養靈感的來源。

原來咖啡館在不知不覺中能滿足需要創意與靈感人士的需求了呢。圖/Neo_II@flickr

參考資料:

  • Freedom from constraints: Darkness and dim illumination promote creativity. Journal of Environmental psychology, 2013;35 67-80.
  • The influence of ceiling height: The effect of priming on the type of processing that people use. Journal of Consumer Research. 2007;34(2), 174-186.

想了解更多哇賽!心理學嗎?
3月 25 日(日)於金石堂城中店
免費心理學講座等你來參加,活動細節搶搖滾區由此去

-----廣告,請繼續往下閱讀-----

 

 

本文轉載自泛科學 2018 年 3 月選書《哇賽心理學》,格子外面出版

哇賽心理學_96
45 篇文章 ・ 9 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

0
0

文字

分享

0
0
0
深海的色彩
科學松鼠會_96
・2012/12/13 ・2927字 ・閱讀時間約 6 分鐘 ・SR值 459 ・五年級

海是什麼顏色的?

你可能在上海附近見過混雜著泥沙的黃色的海;你也可能見過因為很多浮游植物而呈現綠色的海,不過我想大多數人對於「海的色彩」這個話題,第一反應還是「藍色」。為什麼是「藍色」?海真的是藍色的嗎?

要解答這個問題,就讓我們先來看看光線在水中的傳播吧。當陽光照射在海面上時,紅光、橙光這些波長較長的光,基本上就是直接一頭紮進水中,勇往直前 直至被完全吸收。而藍光、紫光這些波長較短的光,卻是只要稍微碰壁,就會向四周散射或者反射回來,只有少量會被吸收。我們看到的大海的藍色就是這些被散射 和反射回來的藍色光。另外,紅光、橙光、黃光這些長波長的光能量較低,它們能穿透海水的距離很短,到水深100米處就被吸收得差不多了;而綠光和藍光的能 量比較高,也就能穿透更多的海水,到達大約水深200米的地方。所以海水越深,我們看到的藍色也就越深。

▲水在海水中的傳播

但,就是這些反射到我們眼睛裡的藍光矇蔽了我們,讓我們忽略了一個重要的事實——由於大多數的光線無法穿過比200米更深的水域,所以,在我們所能看到的藍色以下,還存在著一個更為廣闊的幽暗世界,那,就是深海。

-----廣告,請繼續往下閱讀-----

地球上的海洋的平均深度是3800米,最深的馬里亞納海溝甚至深達10911米,就算把世界最高峰珠穆朗瑪峰(海拔高度8844米)填進去,也還差 2000多米無法將其填滿。然而,這佔到海洋總體積85%的巨大空間,卻長期以來處於被忽略的狀態。事實上,如果考慮到深海佔據了海洋的大部分,我們應該 說「黑色的大海」比「藍色的大海」更加確切。

不,我們也不能就此說深海就是全然的一片漆黑世界。就像宇宙空間存在著眾多發散著光芒的星辰一樣,深海也閃爍著星星點點的光芒。那是什麼?請別忘 記,地球是一個充滿了生命奇蹟的星球。深海也同樣如此。這一廣闊的空間是地球上最大的生物棲息地,也是地球上最大的生命儲存庫。到目前為止,科學家已知的 動植物種數是約200萬種,而據估計,深海中可能還有1300萬到3000萬個物種尚待我們發現。而這些生物的色彩,也構成了深海色彩的一部分。接下來, 我們就看看水深200米以下那些生物的色彩吧。

無色

在一個沒有隱蔽所可供躲藏的地方,最簡單的隱藏策略就是把自己變成透明的。大量的動物都想方設法把自己變得更加透明,讓別人難以看見。比如玻璃章魚,全身上下唯一不透明的地方就是它的腸道。而這些腸道總是維持垂直,讓其製造出的陰影減到最少。

▲玻璃章魚

-----廣告,請繼續往下閱讀-----

而對於一些無法變得透明的部位,一些生物會使用一項叫做「發光消影」的技術,用生物光來消除不透明部分的陰影,通過調整發光器的亮度,它能把自身體 色調到與周圍環境的光線亮度一致,這也能起到「透明化」的作用。這項技術對於那些在不同水層間上下遷徙的深海生物尤其有用,能讓它們不論是在明亮的海水上 層還是幽暗的海水中層都能遊刃有餘。銀斧魚Argyropelecus olfersi和圓罩魚Cyclothone是使用這項技術的個中好手。遠在人類第二次世界大戰在飛機上利用這項技術之前,它們就早已將其利用得爐火純青 了。

然而,「道高一尺、魔高一丈」這句話在生物界中可謂屢試不爽。捕食者總有相應的策略來對付獵物的小伎倆。——某些魷魚戴著偏光鏡,可以看到那些幾乎完全透明的生物;也有一些動物戴著黃色濾鏡,這會讓對方的發光器呈現綠色從而暴露行蹤。

紅色

海洋中水深200-1000米的地帶被稱為「微光帶」,光合作用在這裡已經無法進行。但仍然存在白天和黑夜的分野。很多生活在這裡的生物都是紅色的——由於不存在可以把紅色反射出來的紅光,它們看起來就是黑色的,這讓它們得以完美地融入環境之中。

▲來自新西蘭的深海魚—橘棘鯛,一些洗髮乳含有從它身上提取的油

-----廣告,請繼續往下閱讀-----

為什麼不乾脆變成透明的?有時候不透明也很有必要。比如說一種最近才發現的水母Lampocteis cruentiventer(意為「血紅色肚皮的水母),它的胃是深血紅色的,目的是為了掩蓋它吃進肚子裡的生物所發出的生物光,不讓自己在大塊朵頤之際 變成其他生物的獵物。

同樣,捕食者也針對這些紅色生物開發了相應的秘密武器。比如巨口魚,它能用發射紅外光的方法,去照亮這些本應消彌於黑暗中的紅色生物,讓它們再無所 遁形。由於大多數的深海魚類對紅光都不敏感,這些發出紅光的捕食者能夠得以悄悄接近獵物而不被其發現,它們簡直就像戴了夜視鏡一樣。

藍色

水深1000米以下,就再沒有任何光線可以穿透進來了。由於捕食、防衛和吸引配偶的需要,很多生活在這裡的生物都會發出藍色的生物光,為什麼呢?想 想我們剛才說的內容就知道了——因為藍光是在海中能夠傳得最遠的光,當然發藍光效果最好啦。也因為如此,這裡的大多數生物也都只能分辨出藍光。

顯眼的藍色可以成為很好的報警訊號。環礁水母在受到驚擾的時候,身上會像放焰火一樣發出一圈圈閃亮的光芒,其亮度可吸引100米外的掠食者的注意。這種焰火表演就像警鈴一樣,足以把接近它的生物嚇一大跳。不想被隨後趕來的捕食者吃掉?那還是趕緊溜之大吉吧。

-----廣告,請繼續往下閱讀-----

▲環礁水母的煙火秀

黑色

在一片漆黑的大背景下,把自己的體色變成黑色是一件理所當然的事,幾乎和變成透明具有一樣的效果。有好幾種鮟鱇和章魚是近乎黑色的,也就不那麼奇怪 了。也有很多生物採取的是將透明與黑色相結合的策略,比如黑水母:除了透明的凝膠組織以外,它還有一個深黑色的絨布狀傘膜,兩者的配合讓它成了一個像黑洞 一般的物體,能吞噬所有觸及它的光線。

另一個值得說說的動物是凸眼玻璃烏賊。它遇到敵害的時候,首先採取的策略是通過往體腔裡注水的方法,讓自己變得透明。如果這招沒有效,它才採用烏賊 通常採用的墨汁策略,只不過一般烏賊噴墨汁是往體外噴,而這種章魚卻是往自己肚子裡噴,噴墨汁的結果就是讓自己整個變成黑色,隱入漆黑的深海當中。

▲凸眼玻璃烏賊

-----廣告,請繼續往下閱讀-----

黃色

黃色光在深海是一種很少見的光,因此大多數深海生物都無法察覺到它。然而,屬於環節動物的浮蠶Tomopteris sp偏偏就利用了這種顏色的光作為自己生物發光的色彩。浮蠶本身的顏色並不固定,它們身體的色彩往往取決於最近吃的什麼食物。然而,那道流動於它們附肢末 端的黃色光芒卻是辨認這些動物的標誌。科學家至今不知道這種生物光的作用,這難道是它們在黑暗中辨認同伴的秘密信號?

▲浮蠶屬生物

白色

就像很多洞穴生物一樣,很多生活在深海底部的動物都由於缺乏色素而呈現出白色。它們和生活在深海中層的生物有一個很大的不同,就是它們有地方可以隱藏。海底的沙礫、以及一些固著生活的生物,都為生活在海底的生物提供了很好的隱蔽處。因此,擁有淺色的身體也就不那麼可怕了。

▲Yeti Crab,這個瓶刷子一樣的生物被翻譯成「基多長毛怪」,日本人一發現它,就立刻推出了以它為藍本的毛絨玩具,結果在市場上大賣

-----廣告,請繼續往下閱讀-----

轉載自 科學松鼠會,作者:化石

科學松鼠會_96
112 篇文章 ・ 6 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀