0

0
0

文字

分享

0
0
0

該如何解開「能源」議題裡的愛恨糾葛?在路途中想像未來吧! ──《人類大未來》

三采文化集團_96
・2018/11/16 ・4693字 ・閱讀時間約 9 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

y編按:快問快答,你覺得未來是什麼樣子?我們都在前往未來的路上,前面的道路會如何開展?景色又如何呢?泛科學2018年11月選書《人類大未來:下一個五十年,科技如何讓人類更幸福?》邀請多位科學家以及研究學者,一起描述未來,探討那些關於能源、科技、太空、氣候變遷、生物醫學……的真實與想望,讓我們邊前進邊一起共譜未來吧!

能源與溫室氣體之間的糾葛該如何解?

根據國際能源署 (International Energy Agency) 的說法,能源的生產與運用占全世界溫室氣體排放量的三分之二。兩者的關係如此密切,因此,要解決氣候變遷的問題,不得不從能源著手。

該如何降低使用能源所產生的的碳排放?看起來最簡單的答案是停止燃燒石化燃料,但事實上要做到這一點非常困難。石化燃料已經與現代人的生活畫上等號,它確實在為我們的生活「加油」。在我們想到替代方案之前,要人們暫時別過原本習慣的日子,是不會被大家所接受的。對於那些能源取用相當受限,甚至要靠石化燃料才能發展的國家,要阻止它們的發展也不公平。所以我們需要一個計畫,可以按部就班降低我們對石化燃料的依賴。

停止燃燒石化燃料是降低使用能源產生的碳排放最簡單的方法。
圖/pixabay

首先,我們需要更有「效率」。

從一開始就不要燃燒石化燃料,才是減少溫室氣體最便宜的方法。在英國(在其他地區也一樣),人們無意間浪費了非常多的能源,例如在發電及輸電的過程中會耗損三分之二的電力,隔絕效果不佳的建築也會讓熱能白白散失。如果節約能源是件好事,為什麼我們沒有做得更好呢?部分原因在於人們就是對有效運用能源這件事不感興趣,而且獎金或補助對大多數人也沒有吸引力。

另一個問題是,效率會幫人們省錢,結果省下來的錢拿去用在其他會產生更多溫室氣體的事物上,造成「反彈效應」(rebound effect)。例如把節電省下的電費挪用在暖氣上,結果燃燒更多瓦斯,或者用這筆意外收入搭飛機去旅行,結果產生更多碳足跡。

-----廣告,請繼續往下閱讀-----

第二個解決方法是用「更聰明」的方式經營能源系統。

多數能源系統的運作基礎是讓能源供給跟隨能源需求,讓供需維持穩定平衡,電力尤其如此。電力系統有其技術優先順序,包括總是保持開機的基本負載發電廠(如核能與燃煤)、變動型發電廠(如太陽能與風力)、彈性型發電廠(如天然氣),以及可以迅速啟動但相當昂貴的尖峰負載型發電廠(如柴油)。

舉例來說,如果你想把衣服洗乾淨,就得使用洗衣機。為了滿足這個需求,電廠的工作人員就會打開某個發電機或調高發電量。要是在繁忙時段,每個人都在洗衣服,那麼很可能就要追加使用石化燃料(天然氣或柴油)發電。而「聰明」的能源系統是要讓需求跟隨供給,在上述案例中,智慧型洗衣機或許會問你:「什麼時候需要乾淨的衣服?」然後在能量供給充足時啟動洗衣機(前提是符合你的時間需求),也就是說電廠不需要啟動額外的發電機。

第三點,尋找石化燃料的替代能源,有效減少溫室氣體或達到零排放的目標。

就發電來說,你可以選用低碳能源來取代石化燃料,像是可再生能源、風力、太陽能與生質能源(燃燒樹木或其他會生長的東西),當然還有核能。另一個選擇是運用碳捕集和封存 (carbon capture and storage, CCS) 技術,也就是設置一個大型的化學工廠緊臨發電廠,捕捉廢氣中絕大多數的二氧化碳。接著,這些二氧化碳透過管線運輸並注入停止使用的天然氣田或油田,讓二氧化碳(理論上)能永遠受困於此。如果在碳捕獲封存廠所燒的不是石化燃料而是生質能,而且你將二氧化碳捕獲,那麼你就能有負的二氧化碳排放!

碳捕捉(carbon capture and storage, CCS)示意圖。source:SaskPower

這是因為,樹木生長的時候會吸收大氣中的二氧化碳— 所以如果你將它燃燒並捕捉二氧化碳,你就會降低大氣中的二氧化碳含量(只要你有將樹木補足)。

-----廣告,請繼續往下閱讀-----

但是並非所有生質能都是不排碳的,這取決於該生質能是如何種植、收成、補充、運輸,以及土地的利用方式。熱能的替代選項倒是不少。今日我們燃燒大量的天然氣(甲烷)來取暖,但其實有更好的替代氣體,例如用生質來製造生物氣體 (biogas),產生的溫室氣體淨排放量應該會比較低。另一個選擇是氫氣。燃燒氫氣的副產品是水,所以不怕造成汙染。問題是大多數氫氣都來自天然氣,利用甲烷蒸氣重組的程序取得,而這個過程會製造二氧化碳。我們也可以將水電解為氧和氫,但是這個方法需要鉑和鈀等昂貴金屬作為觸媒,電力也需要花不少錢。

運輸一向以石化燃料為主要動力來源(這是目前的情況,說不定有天就能使用氫氣),不過路上越來越常看到電動車和油電混合動力車,它們也越來越受消費者青睞,據統計,全世界目前已賣出超過一百萬輛電動及油電混合動力車。在我們的觀念中,一輛車靠一個油箱可以行駛幾百公里,而且加油只需幾分鐘,現在這個觀念將會受到挑戰。儘管電動車的電池技術以及充電站的數量都在迅速改善,但仍有一段路要走。

比起電力和熱能,人們行為的改變對於運輸的影響更為重要。近來調查顯示,英國人每天大約有百分之五的時間在開車。隨著自動車的開發、智慧公共運輸的發展、更好的城市自行車規劃,以及視訊會議技術的進步,在不久的未來就會改變人們往返兩地的模式。

隨著視訊會議技術的進步,在不久的未來就會改變人們往返兩地的模式。
圖/asian fortune news

破壞大爆發!

「破壞性科技」(disruptive technology) 指的是取代既有技術進而撼動市場的科技,或是某種足以開創新局、創造全新產業的產品。

看看能量領域,破壞正在發生。

-----廣告,請繼續往下閱讀-----
能量領域的破壞正在發生。
圖/pixabay

首先,能源使用效率越來越高。

綜觀歐洲,節能標籤與產品標準化所省下的能源,相當於義大利一整年所消耗的能量。光是把一顆不起眼的白熾燈泡換成 LED 燈泡,就能節省百分之九十的電力。智慧科技也讓我們使用能量更有效率,例如智慧恆溫空調可以記錄人們的使用習慣,調節冷暖氣的使用度,進而省下一筆錢(不過當然也會發生前面提過的「反彈效應」)。

此外,能源技術也變得越來越平價。

太陽能光電板隨著全球性的布署而越來越便宜,其銷售量每增加一倍,價格就會下降大約百分之二十一。目前全球的太陽能光電大約三百兆瓦 (GW);不過十年之前,這個數字還僅接近十兆瓦。這麼解釋吧,如果我將家中所有電器打開,大約需要十千瓦 (KW) 的電力;一兆瓦等於一百萬千瓦,代表可以在尖峰時間處理十萬戶住家的用電。這將可以創造數以百萬的「生產性消費者」(prosumers),亦即在消費電力的同時生產電力。而下一件期待中的大事,就是能在住家中儲存電力的電池。

從全球性角度思考能源的未來

現在讓我們把眼光從個人與社群開始擴大,改以跨洲甚至全球性的角度來思考。當然,能源早已是全球性的重要議題,畢竟人們會在各國之間調動大量資源來生產能源。那電力也可以這樣移動調度嗎?

其實許多國家已經這麼做了, 例如多數歐洲國家的電力網路早已彼此連結,甚至英國也透過跨境輸電網(interconnectors,指水下電纜及輸送天然氣的管線)和法國、荷蘭和愛爾蘭互相連結。不過,這個規模有沒有辦法更進一步擴大呢?

-----廣告,請繼續往下閱讀-----
英國透過跨境輸電網和法國、荷蘭和愛爾蘭互相連結。
圖/Power Engineering International

由同名基金會主持的「沙漠科技」(DESERTEC) 跨洲能源計畫,便是眾人相當期待的超級電網計畫。它的構想是在撒哈拉沙漠內部與外圍建設風力發電、太陽能板發電和聚光式太陽能發電 (concentrated solar power, CSP) 系統,並透過位於西班牙及義大利的全新高壓直流輸電 (high voltage direct current, HVDC)) 系統,將多出來的電力輸送到歐洲。

聚光式太陽能發電的原理有點像是用放大鏡來凝聚陽光,你可以想像滿地的鏡子都面向一座高塔,將光束折射至高塔上的集熱器,可產生攝氏一千度的高溫,足以像傳統火力發電廠那樣推動蒸汽引擎。聚光式太陽能發電所產生的額外熱能,都會儲存在巨大的熔鹽電池(將熱能導入鹽使其融化)內,之後還可以用於夜間發電。

科學家也想像在太空中放置太陽能板,然後將能源回傳地球。這聽起來像是 007 電影裡的陰謀,不過這個「太空太陽能」(space-based solar power, SBSP) 構想早在一九七〇年代就有人提出來了。當太陽光照射地球時,約有六成的能量會被大氣層吸收或散射。如果將太陽能板放置在大氣層外,就可以大幅提高太陽能的接收量。一旦想出辦法將太陽能板送上太空,下一個挑戰就是如何將能量傳回地球。透過微波或雷射光束可能是最好的方法。最後,你需要建立某種某種「整流天線」(rectenna),寬度或許要好幾公里,來接受這些光束並將它們轉化為電力。除了將能量光束射向地球之外,還有些關於政治和經濟的小問題,就是誰要來付這些費用,到時能源又歸誰所有⋯⋯

太空太陽能(space-based solar power, SBSP) 。
圖/ExplainingTheFuture.com

在路途中想像未來

以上是對未來能源的走馬看花,所有這些預測細節幾乎一定都是錯的,不過我希望各位能了解,我們與能源的關係隨時都有可能改變,也許更好,也許更糟。

最後,我想提出一些問題,也希望各位讀者一起來思考一下。

-----廣告,請繼續往下閱讀-----

請大家暫時放下心中的懷疑與成見。如果能源可以完全免費呢?如果不再有電線和管線,事情又會變成怎樣?如果你能從空氣直接取得能源,就像用無線網路取得資訊一樣呢?

聽來有點誇張,不過並非不可能。

免費或非常便宜的能源可以來自超級便宜的太陽能(或許由太空發射回地球)或是其他可再生能源,又或許科學家終於解開了核融合的祕密(在地球的發電廠模仿太陽的運作方式)。此外,無線傳輸其實比你想像的更普遍。電動牙刷和行動電話已經可以使用感應方式來充電,或許可以使用那類技術來傳遞能源。至少我們可以使用微波或雷射光束,遠距離傳輸能源,好比太空太陽能的例子。然而這一連串問題的重點不在於經濟或技術層面的可行性,而是這些假設會如何改變未來我們與能源互動的方式。

如果能源是免費的,就像我們呼吸的空氣,人類與能源的關係會發生何種改變?

-----廣告,請繼續往下閱讀-----
圖/pixabay

作者簡介:傑夫.哈迪 (Jeff Hardy)

倫敦皇家理工學院 (Imperial College London) 格蘭瑟姆氣候變化與環境研究所 (Grantham Institute) 資深研究員,專門研究低碳能源系統的未來發展,以及該系統與人們日常生活和企業營運的關係。曾任英國天然氣暨電力市場管制局 (Ofgem) 永續能源發展小組的主管和政府間氣候變遷委員會第三科學小組主任,並在英國能源研究中心 (UK Energy Research Centre)、英國皇家化學學會 (Royal Society of Chemistry)、約克大學 (University of York) 綠色化學小組、塞拉菲爾德核能實驗室 (Sellafield) 等機構進行研究。

 

 

本文摘自《人類大未來:下一個五十年,科技如何讓人類更幸福?》,三采文化,2018  年 11 月出版。

文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

15
7

文字

分享

0
15
7
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

-----廣告,請繼續往下閱讀-----

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

-----廣告,請繼續往下閱讀-----

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

-----廣告,請繼續往下閱讀-----

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

-----廣告,請繼續往下閱讀-----
從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

-----廣告,請繼續往下閱讀-----
可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

-----廣告,請繼續往下閱讀-----

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
1

文字

分享

1
2
1
最安全的核電廠?小型核電廠 SMR 用發電量換安全性,遇到停電也不怕?
PanSci_96
・2023/06/03 ・2582字 ・閱讀時間約 5 分鐘

隨著核電廠陸續退役,台灣也逐漸邁向零核家園,郭台銘突然提出的「一縣市一核電」把核能議題的熱度重新炒到高峰。

雖然看似激進,但有人認為如果是郭董提到的「小型核電廠 SMR」的話,或許就有可能。這個 SMR 到底是什麼?它安全嗎?再者,它真的是核電的未來嗎?

實際上已經有人成功運行小型核電廠,並且已經併網發電了,他們是怎麼做到的?

小型核電廠是什麼?

台灣現在僅存,還在運作的核電廠就是核三廠,核三有兩部機組,每個機組的發電量大約為 950MW。

-----廣告,請繼續往下閱讀-----

小型核電廠正式的名稱是「小型模組化反應爐」SMR(Small Modular Reactor),發電量通常在 20~300 MW,比一般核電廠小上許多。還有甚至更小,發電量 1~20 MW 的 MMR(Micro Modular Reactor)的反應爐。

奇怪,發電量怎麼越發展越小了呢?這樣不就得要蓋更多核電廠?

小型核電廠的特點就是小發電量,因為這能創造三個優點:安全、造價便宜、易組裝。

核能那麼危險,為什麼還要用?

這三個優點實際上就是現在核電發展的最大瓶頸。核能發電也已經有 60 年歷史了,但至今全世界的發電量中,核電也只佔大約 10%。最大的問題不外乎就是安全性、造價昂貴和建造時間久。

-----廣告,請繼續往下閱讀-----

就算撇除安全性,漫長的建設時間與昂貴的發電成本,是讓許多電力公司卻步的原因之一。根據能源研究公司 BNEF(彭博新能源財經)的調查,從 2009 年到 2021 年,12 年間核能的建設成本增加了 36%;加上核電廠動輒 5~10 年的建設時間,就算核能是屬於低碳排的發電方式,大家也都更傾向選擇發展成熟的再生能源。

核能有一個最大的優點,那就是穩定持續發電。太陽能與風力這些再生能源容易隨天氣與時間影響發電量,反之核能屬於基載電力,本來就與風力、太陽能定位不同。

太陽能與風力等再生能源易隨天氣與時間影響發電。圖/Envato Elements

小型核電廠如何克服安全性?

要好要快也要便宜,除了穩定與低碳,還想要兼顧安全跟造價低的核電,小型核電廠真的是那個完美的選擇嗎?

小型核電廠 SMR 主打的特點就是一個字,小!只要夠小、功率降低,反應爐就不會一口氣釋放太多的熱,甚至能免除外部冷卻設備,靠自然循環降溫。

-----廣告,請繼續往下閱讀-----

福島核電廠發生意外的主因就是海嘯破壞了核電廠中做為緊急電源設備的發電機與電池,導致冷卻系統失效,最後反應爐內的溫度無法抑制、不斷竄高,將水分解成了易燃的氫氣,產生爆炸。

如果 SMR 的反應爐可以撇除對外部冷卻系統的依賴,靠自己就能降溫,就能最大程度避免發生爆炸以及爐心熔毀的事故。

我們以目前 SMR 發展最成熟的美國公司 NuScale 為例,在他們發展的 60MW 反應爐中,含有 37 個燃料束,整個反應爐高約 17.8 公尺,直徑約 3 公尺。這個大小甚至可以在工廠製造,透過貨車或火車運送至預定地再快速組裝起來,大幅減少建造的時間與成本。

NuScale 把水循環系統都包在了反應爐,一次冷卻劑藉由熱對流上下循環,完全不需要幫浦,減少停電時產生的風險,一次冷卻劑的熱則會傳給二次冷卻劑,讓二次冷卻劑變為蒸氣推動渦輪發電。

-----廣告,請繼續往下閱讀-----

如果真的遇上斷電事故,反應爐也有緊急冷卻系統,直接將整個反應爐泡在大水槽中;根據計算,水會在 30 天後完全蒸發,而此時的反應爐功率已經降低為原本的 4% 以下,只要靠空氣循環就能穩定溫度。

福島第一核電廠事故主因是由於海嘯破壞了做為緊急電源設備的發電機與電池。圖/維基百科

中國的小型核電廠是怎麼做到的?

而現在,在中國已經有第一座陸上 SMR 併到電網了!2021 年年底,中國山東省「石島灣高溫氣冷堆核電站示範工程」正式併網發電,發電功率 200MW,雖然發電廠的總體積不小,但以它的發電功率及主打安全的設計,是實實在在的一座 SMR。

所謂的「高溫氣冷堆」,指的是流經燃料棒,充當冷卻劑與熱交換的材料,所使用氣體如:氦氣。與壓水式反應爐用水作為冷卻劑的最大差別在於不僅熱轉換效率更好,也不用擔心水因高溫氣化而有爆炸風險,故可承受更高的反應溫度。

比起傳統反應爐,高溫氣冷堆可以用更少的鈾 -235 進行反應,也就是能在燃料棒中有更多的鈾 -238 可以在溫度飆高時吸收掉多餘中子,加上高溫氣冷堆本身就能承受高溫的特性,如果真的遇到失去電力的情況,整個反應堆的溫度,也會穩定在 1600℃ 上下。

-----廣告,請繼續往下閱讀-----

除此之外,石島灣核電廠的設計十分有趣,是球狀反應爐。在如同沙漏般的大反應爐中,燃料棒被做成了一顆顆直徑約 6.7 公分的燃料球,兩萬七千顆燃料球像沙漏中的沙子一般填充在反應爐內。

鈾燃料會被包裹在球狀構造的中心,外頭則是作為中子減速劑的石磨;作為冷卻劑的高溫氦氣會從球的中間通過帶走熱量,燃料球可從下方取出,並從上方填充。

不過,高溫氣冷堆能否成功,還需要許多時間觀察,例如石磨包裹的燃料球是否容易摩擦造成破裂,都是需要進一步注意的。

燃料棒被做成直徑約 6.7 公分的燃料球。圖/PanSci YouTube

小型核電廠的未來?

除了中國外,各國也都在發展不同形式的 SMR,甚至有人在發展功率 20MW 以下的微型核子反應爐 MMR。例如美國愛達荷國家實驗室正在建造的 MARVEL 反應爐,以及核能公司 Radiant,它們正在打造貨櫃大小、可以隨拉隨走的 MMR,希望能取代社區停電時使用的高污染柴油緊急發電機。

-----廣告,請繼續往下閱讀-----

不論是小型還是微型核電廠,除了技術還有待發展,成本是否能壓低,也是個重要指標。當然,還有另一個大魔王,就是核廢料問題,還等著被解決。

根據研究推算,NuClear 各種機型每單位能量產生的核廢料可能會是傳統核電廠的 5.5~30 倍不等,球狀反應堆的體積因為球狀包裹物的設計,核廢料的體積也是明顯可見的變大,而這些核廢料的處置問題也是全球都在面對的問題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。