0

0
0

文字

分享

0
0
0

太陽能板架好了,然後呢?來一同認識太陽光電併網與調度面臨的課題

鳥苷三磷酸 (PanSci Promo)_96
・2018/09/07 ・3004字 ・閱讀時間約 6 分鐘 ・SR值 532 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

太陽是地球生命最主要的能量來源。屋頂鋪設好太陽能面板,搭設好線路,電力就能夠隨手可得……真是如此嗎?我們距離這樣的生活還有多遙遠呢?

圖/ulleo @Pixabay

1922 年,愛因斯坦獲得諾貝爾獎,這次獎項並非頒給眾所矚目的相對論,而是頒給了光電效應。光電效應描述了光線照射物體表面時會使其發射出電子的物理現象,而太陽能電池 (Solar cell)就是應用半導體,在接受光照後其射出的電子會在不均勻的材料間形成電流,藉由串連這樣的模組、獲得電壓來發電。第一片太陽能電池在 1952 年正式誕生,而時至今日,這項技術佔全球能源的發電量比例仍不到 2%。

為什麼需要這麼多裝置容量?

台灣目前的政策規劃,2025 年再生能源發電占比 20%,其中,太陽光電更規劃要達成 20 GW (Gigawatt/十億瓦)的裝置容量。為了讓大家對這個目標數字有個概念,我們需要拿出其他數字來稍稍比較一下: 2017年,全世界的太陽光電裝置容量將近 400 GW,而根據經濟部能源局的資料,截至 2018 年 6 月全台灣的發電機組的總裝置容量為 52.79 GW,再生能源的裝置容量占僅達 5.75 GW(10.89%,資料來源:能源統計月報,其中太陽光電的裝置容量僅達 2.24 GW(資料來源:能源統計月報。也就是這短短的七八年間,太陽光電的裝置容量要成長近 9 倍。

可能已經有夥伴眼尖注意到了,即使再生能源在 2025 年的佔比要提高到 20%,但在這裡太陽光電預計要達到的裝置容量比例似乎有點高?是的,這裡要考慮到太陽光電與風力發電和其他有我們目前較為慣用的發電方式有點不同,屬於「間歇性能源」,太陽不會隨時都在照耀,而風也並不是時時刻刻都颳起。「裝置容量」主要意指機組在最大輸出時的發電量,靠天吃飯的再生能源並不像火力發電或核能發電,可以進行升載調度。間歇性能源討論到其發電量佔比時,更必須要將其「容量因數」納入仔細的檢視。

容量因數的計算公式:(年總淨發電量)/(額定容量 × 8760)

2017 年台電統計全台的太陽光電容量因數為 13.34 %,相較而言火力為 75.21%,而風力則為 27.98%。裝置容量反映的是這個機組在可以達到的最大輸出發電量,要加上容量因數才能真正代表此類發電技術在發電量能夠提供的貢獻。

正是由於現行太陽光電的技術以及太陽能本身的侷限(像是遇到天黑和下雨就不行惹),現行的容量因數偏低,因此太陽光電要產出與火力發電相同年發電量,其裝置容量必需是火力發電的 5.6 倍。

「屋頂型」與「地面型」的裝設規劃

現行的政策規劃在七年內要讓太陽光電的裝置容量成長 9 倍,為了達成這個困難的目標,經濟部推出「太陽光電 2 年推動計畫」,短期目標為 2 年內完成 1.52 GW的太陽光電,為 2025 年的設置目標量鋪路。台灣地狹人稠,太陽能光電在台灣主要架設的位置可以分成兩大類:「屋頂型」與「地面型」。

「屋頂型」架設於公有屋頂、工廠屋頂、農業設施或者其他屋頂;這類的設備數量多、裝置容量小而分散。而「地面型」則主要選擇鹽業用地、嚴重地層下陷地區、水域空間、不易耕種農地及淹埋場等地方架設,共通特色是其位置分散偏遠、交通不便、人跡稀少。

桃園大圳光電埤塘。 圖/桃園市政府環保局網站

簡單來說,太陽光電在台灣現階段的裝置特色多半是小而分散,或者是非常偏僻。這樣的裝置架設,在未來可以預見會有併網與調度的難題需要克服。

可預見的併網與調度難題

首先是將太陽光電加入電力系統的「併網」可能會遭遇到問題。電力系統主要由發電系統、輸變電系統、配電線系統所組成。如果將大型的發電系統比喻為(不只一顆的)心臟,輸配電系統比喻為血管,那現行的電力系統基本上調控的方式就是收集血管中的資訊,再來調控調度心臟的輸出;而太陽能光電併網,就像是在微血管或者是小動脈上加裝小型的心臟。一開始電力系統的規劃並沒有這樣的設計,因此現階段的太陽光電的推廣,就需要克服電網末端的輸配線路是否能負荷的問題。

除了併網問題之外,其次則是調度以及資訊整合的難題。小容量大數量的太陽能光電併網加入發電的行列,發電資訊與調度指令整合,隨著數量增加難度越來越高。過去由於太陽光電佔發電量比極低,其變動不易影響供電品質,而在可見的未來佔比逐漸升高的情況下,電力系統該如何調控、調度這些來自於末端的電力?又該如何得知並不穩定的太陽光電即時的電力資訊?這些小型發電裝置該如何配合調度?或者該如何能將即時的資料回傳至調度中心?

NEPII 計畫中的「用戶側再生能源與用電管理及需量聚合服務平台」正在試著要解決這樣的問題。

「用戶側再生能源與用電管理及需量聚合服務平台」

現行台灣的太陽光電可以預見將面臨各端的用戶數量極為龐大的情況:2017 年的統計,太陽光電已併聯的案數約為 1.5萬座,但現行系統中能即時監測到數量不到百分之一。而在 2025 年之前要大幅提升光電佔比的情況下,分散式再生能源系統的資訊整合與調度應該要如何完善,將是維繫電網穩定的重要關鍵之一。

「這個服務平台有點像太陽能光電設備與台電之間的 LINE 系統,台電可以調度末端的太陽光電,而末端也可以即時反饋發電資訊」計畫的成員,資策會系統所能源策略總監陳文瑞說。

「用戶側再生能源與用電管理及需量聚合服務平台」整合用戶端、製造端與台電之間的資訊,提高整體發電效率以及擴大未來發展空間。 

圖/geralt @Pixabay

他們希望藉由共通資訊模型技術 (Common Information Model),建立整合不同廠牌的互通格式,克服現行各家自訂規格、資訊無法互相傳輸的問題;並且採用最簡易的資訊協定,藉此降低廠商導入互通格式技術門檻。甚至更進一步,可以協助太陽光電用戶端整合其發電資料,在系統中加入人工智慧,協助預防性偵測出可能需要維修或者進行維護的光電模組。

在面臨大規模能源轉型的時刻,台灣選擇了大幅提高再生能源比例的道路。應運而來的是,為了完成這樣的轉型,整體的電力系統與資訊整合都必須需經歷一番傷筋動骨、改換體質的技術挑戰。

註:此處僅計算已完成併網的部分。

參考資料:

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
163 篇文章 ・ 273 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
邁向淨零排碳的未來:去碳燃氫技術!
研之有物│中央研究院_96
・2022/12/10 ・6194字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|廖英凱
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

高排碳發電方式的轉型

氣候變遷是全球議題,為了降低碳排放,發展低碳電力相當重要。臺灣目前主要使用天然氣發電,雖然排碳量較燃煤發電低,仍屬高碳排的發電方式,若未來要達到 2050 淨零排放,勢必要開發更多的低碳電力。

中央研究院「研之有物」專訪院內物理研究所陳洋元研究員,他與團隊應用天然氣催化裂解的理論,突破各種技術限制,打造出「去碳燃氫」(methane pyrolysis)裝置,使得燃氣發電可以更進一步減少碳排放,目前成果已接近歐盟需求,並預計陸續擴大運用至商用發電機組。

陳洋元向研之有物團隊介紹「去碳燃氫」技術。
圖|研之有物

因人類工業活動排放的二氧化碳而導致的氣候變遷問題,已是當代人類亟欲解決的難題。近幾年,國際組織與科學機構也不斷地強調減少碳排放的必要,以及調整減碳標準。2014 年聯合國政府間氣候變化專門委員會(IPCC)的綜合評估報告指出,人類應在 2100 年以前削減 90% 的碳排。

但到了 2018 年的全球暖化特別報告時,IPCC 則將標準加嚴,人類需在 2050 年時達到「淨零排放」,亦即「人為溫室氣體的排放量,扣除透過碳匯碳捕等移除量後為零」。2021 年下半年,世界各大工業國也陸續提出在 2050 年前後達到該國淨零排放的政策目標和政策路徑。

在世界潮流的推動下,2021 年 4 月總統蔡英文在世界地球日的活動,宣示臺灣將努力在 2050 年達到淨零排放。同年中研院在廖俊智院長的主導下,啟動了「Alpha 去碳計畫」,院內物理所的陳洋元研究員與研究團隊也開始為臺灣的「去碳燃氫」技術建立基礎。

把天然氣變成氫氣,真的可能嗎?先來看看過去科學家怎麼做吧!

降低天然氣碳排的方法

為能達到降低碳排的能源轉型,又需兼顧產業發展的用電需求,臺灣目前的能源規劃,預估在 2025 年時,再生能源發電量佔比約 15.2%,其餘則為 45% ~60% 的燃氣發電與 25% ~40% 的燃煤發電所組成,到 2050 年時,樂觀理想情境中再生能源發電量佔比可逾 60%,剩下則以燃氣發電為主。

儘管燃燒天然氣(甲烷)的理論排碳量,約只有燃燒煤炭的一半,但每燃燒 1 噸的甲烷,仍會產生 2.75 噸的二氧化碳排放,這與淨零排放的目標,仍有相當大的差異。因此,當代天然氣的運用,必須回應如何有效降低碳排放。

大抵來說,降低天然氣的碳排可以分成兩種不同方向的策略,其一是「碳捕捉、再利用與封存carbon capture, utilisation and storage, CCUS)」,方式是將燃燒後的二氧化碳,捕捉下來再利用,如應用於綠藻養殖、水泥製造等,或是將二氧化碳壓縮後封存於耗竭油氣庫這種地質結構上的特殊封閉構造,或是封存於海底富含鹽水的地層構造。

碳捕捉、再利用與封存(CCUS),就是將燃燒產生的二氧化碳,收集與分離出來,拿去工廠再利用或是封存於特殊地層。
圖|研之有物(資料來源|聯合國歐洲經濟委員會

然而碳捕存的技術與概念新穎且須有特定地質條件配合,要能達到具規模的運用仍有相當技術門檻需突破,且碳捕存在臺灣多年來也持續面臨政治及環保爭議,發展進度緩慢。

另一種策略方向,則是「燃料轉換」,將化石能源的天然氣,全部或部分替換為零碳的能源,例如利用微生物分解利用農業等方式生產的有機物質來產生「生質甲烷」(註1)作為燃料;利用大量的無碳電力,電解水後分解為氫氣和氧氣,再將氫氣做為燃料;或是再利用無碳電力將二氧化碳與氫氣合成為甲醇、甲烷、氨等「載氫劑(hydrogen carrier)」以利運送和利用。

還有一種備受矚目的燃料轉換方式,是直接將甲烷裂解為氣態的氫氣和固態的碳黑(carbon black):

只要有足夠的能量,甲烷就能裂解為固態碳和氫氣。
圖|研之有物

其核心原理為,若能提供甲烷分子每莫耳 74 千焦耳的能量,就能把碳原子與氫原子的鍵結打斷,而關鍵在於如何提供能量以及如何提升使用能量的效率。

1999 年,M. Steinberg 發現當溫度夠高時,甲烷鍵結被打斷的效率隨之提升,而提出「甲烷熱裂解」(thermal decomposition of methane, TDM)技術,該技術是將甲烷處於高於 700°C 的高溫環境,使甲烷裂解為氫氣與固體的碳。固體碳可以穩定的儲存,不會增加大氣中的二氧化碳,也可以做為工業生產的原物料使用。

為進一步提升甲烷分解的效率與商業價值,近二十餘年來,許多針對 TDM 的研究,引入了各種催化劑,作為熱解甲烷的反應環境。目前常使用特定比例的惰性合金作為催化劑,將合金加熱成熔融態,當甲烷氣體通過液態合金時,即開始分為氫氣與固態碳。

加熱溫度越高、氣體通過的熔融合金管柱越長,則甲烷熱裂解的程度越高,例如以一公尺長的管柱環境,利用不參與反應的 1175°C 熔融錫金屬,則可轉化 78% 的甲烷;利用具催化性的熔融金屬如 27% Ni–73% Bi 合金,則可在 1065°C 達成 95% 之甲烷轉化

如圖所示,此為天然氣裂解的簡易流程,當天然氣進入管柱時,需要熔融合金 Ni-Bi 作為催化劑,以便在高溫環境下轉化為固態碳(C)和氫氣(H2)。
圖|研之有物(資料來源|Science

為什麼需要催化劑?為了降低化學反應的難度。

化學反應的過程就像冒險者從小鎮(反應物)出發,克服山頂上的巨龍(活化能),並取得山谷寶藏(生成物)。而催化劑就像是幫冒險者開外掛的流浪法師,短暫加入冒險者一伙,開啟原本沒有的秘密通道,讓冒險者不用打龍就輕鬆取得寶藏。
圖|研之有物(資料來源|chemorphesis

實際運用上的限制與問題

以裂解方式生產氫氣的技術,有可能會成為未來氫能發展最主流的方向,歐盟針對氫能發展的預估中,即認為到 2050 年時,歐盟所使用的氫能會有 55% 來自於甲烷裂解,有 30% 來自目前化工產業較成熟使用的天然氣重組,以及 15% 來自於水電解產氫。

因此,2021 年 3 月起,在廖俊智院長的主導下,中研院啟動了「Alpha 去碳計畫」,目的在發展熱催化、電漿裂解等各種技術方法,以達成去碳產氫的發電目標。物理所陳洋元研究員的團隊,也開始在院內建構甲烷熱裂解的裝置,試圖為我國建立起去碳燃氫的技術基礎。

然而,儘管催化性熔融金屬的理論可行,在實務運作上此方法卻有其瓶頸,陳洋元研究員的團隊發現,當裂解後產生的氫氣和碳從熔融金屬表面冒出時,熔融金屬的蒸氣會把碳包住而在金屬表面變成如岩漿般的黏稠流體,必須不斷暫停實驗把岩漿給撈出去,使得學理上雖可高效率地裂解甲烷,但仍難以放大規模至發電機機組或提供給發電業使用。

上述催化性熔融金屬用在天然氣裂解,理論上可行,但是陳洋元團隊實作發現,熔融金屬的蒸氣會把碳包住,會在金屬表面(如管壁)形成岩漿般的黏稠流體,必須不斷暫停實驗,把廢碳渣撈出去。
圖|研之有物(資料來源|Science、陳洋元)

體認到催化性熔融金屬的限制後,陳洋元研究員開始尋找其他也可具有類似催化效果的材質。其中一種可行的催化劑,就是碳黑本身。過去針對催化反應的研究中,即發現碳本身即是一種理想的催化劑。在甲烷裂解的過程中,研究者可以透過利用不同形式、結構與表面積的碳,來調控碳的催化活性

2013 年,韓國研究者 Seung Chul Lee 等人提出用碳黑作為催化劑的甲烷熱裂解裝置設計,其概念是將高溫管柱中,裝填直徑 30 nm 的碳粒作為催化劑,使甲烷通過高溫碳粒時,被催化裂解為氫氣和碳,再透過集塵器與過濾器捕捉碳黑。

2013 年韓國 Seung Chul Lee 等人提出了利用碳黑作為催化劑的甲烷熱裂解裝置。
圖|Korean Journal of Chemical Engineering

雖然概念裝置已提出逾十年,但至今市面上仍未有成功商業化與量產的設備。由於催化劑和裂解後的碳都是相同的物質,因此隨反應時間增加,實驗裝置中的碳黑會不斷吸附。

因此,該實驗設計若要能用於實務上的燃氣電廠減碳,關鍵就在如何能維持或定時減少高溫管柱中積存的碳;如何能延長集塵設備與濾網的更換週期,以須確保裝置能不間斷的長時間運作;以及如何與既有燃氣機組的系統結合。

Alpha 去碳計畫:以局部比例的氫氣代替甲烷

面對過去研究的基礎與限制,中研院的團隊已在開發利用碳黑作為催化劑的甲烷熱裂解裝置,且能搭配自動化的清除積碳、與更新集塵、過濾器,使熱裂解裝置能持續性地運作。

熱裂解的裝置設計上,也並非追求極致的甲烷轉換率,由於氫氣比甲烷擁有更劇烈的燃燒反應,如在空氣中的燃燒速度,甲烷為 0.38 公尺/秒,但氫氣則高達 2.9 公尺/秒,這使得氫氣爆燃的衝擊力遠大於甲烷。

因此,目前仍未有純氫氣或高比例氫氣的商品化發電機組,而多以在甲烷中混合 10% ~30% 的氫氣,達到局部比例的減碳,因此在裝置設計上,須同步調控所產製氫氣與甲烷的比例,使發電機能持續燃燒固定成分比例的甲烷氫氣混合物。

中研院天然氣熱裂解裝置的實體照片。天然氣高溫裂解系統,包含:控溫電子儀器、高溫爐與流量計。放大區域顯示高溫爐上面的構造,白色為隔熱棉,石英管管壁已經有少許的碳渣附著。
圖|研之有物(資料來源|陳洋元)

從減碳效益來比較傳統天然氣發電和部分比例的去碳燃氫發電,以目前大潭電廠最新燃氣機組的熱效率 60% 來計算,每噸天然氣燃燒,可提供 9300 度的發電量,並排出 2.75 公噸的二氧化碳。

但若能將其中 30% 的甲烷高溫裂解後,將氫氣與天然氣混燒,因氫氣的燃燒熱較低,且需額外提供裂解所需的能量,此時每噸天然氣則能發出 7400 度的電量,但碳排放降低為 1.92 公噸的二氧化碳,並生產 0.225 公噸的固體純碳。

也就是說,以大潭燃氣電廠為例,若將 30% 的甲烷裂解,產生氫氣與天然氣混燒,最終是以減少 20% 的發電量為代價,換得 30% 的減碳效益,以及具有精密工業、高產值化工業運用潛力的高純度碳黑原料。

目前中研院的 Alpha 去碳計畫已完成了將甲烷熱裂解裝置與 13 kW 天然氣發電機串聯,混燒 10% 氫氣燃料的概念驗證。

預計在 2025 年以前,將陸續擴大至針對建築物規模使用的 65 kW 燃氣渦輪發電機;和針對廠房、工商業用途使用的 1~2 MW 商用燃氣機組;以及與既有大型燃氣電廠使用的 170 MW 燃氣機組結合,以此建立我國去碳燃氫的產業鏈。

中研院將與業界合作,目標在 2025 年以前,推出裂解效率可達 40% 的去碳燃氫裝置,使臺灣天然氣發電的碳排達到歐盟訂定的永續標準。

開闢臺灣淨零排放的路徑

面對氣候變遷的威脅,世界各國無不積極且緊迫地尋找能達到零碳排放的方式,然而多數國家在有限的自然資源條件下,風力與太陽光電等再生能源的發電規模和穩定程度仍遠不及大型發電廠。

因此 2021 年起世界各國,相繼提出了符合淨零與永續精神的天然氣使用規準。2022 年 2 月,歐盟批准了有助實現歐盟環境目標的「永續活動分類法」與「氣候授權補充法案」,其中針對燃氣發電廠的規範,是要求 2035 年以前須完全由天然氣轉向低碳燃料或再生能源燃料;或是 2030 年前施工但每度電少於 270 克二氧化碳排放量,才能獲得永續金融投資的優惠。

以此作為標準來檢驗目前臺灣的燃氣發電,較先進且尚有機組興建中的大潭發電廠,碳排係數約低於每度電 388 克二氧化碳排放,若能順利搭配裂解效率 30% 的去碳燃氫技術,則碳排係數可降為每度電 271.6 克二氧化碳排放,幾乎符合歐盟的標準。

若再能輔以部分比例的生質甲烷混燒,排出二氧化碳又有部分比例利用碳捕存處理,至少就能使我國在未來最主要使用的天然氣,能符合目前歐盟看待永續能源的標準。

目前中研院陳洋元團隊打造的去碳燃氫技術,能利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的基載電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。

然而,去碳燃氫技術也因減碳目的而降低燃氣的發電量,這會使臺灣已經擴大天然氣使用的政策方向還要更加強化,如增加更多的天然氣進口量,興建更多的天然氣接收站、儲存槽與管線。近年烏俄戰爭帶來世界性天然氣的短缺,以及第三天然氣接收站的興建帶來海岸生態的危害,使用天然氣仍有難以忽視的環境與社會風險。

中研院的去碳燃氫技術,可能不是淨零未來的唯一選項,但傾力推動這項技術,才有機會在邁向淨零未來的過程中,爭取到足以讓永續與潔淨能源普及的時間。

中研院陳洋元團隊打造的「去碳燃氫」技術,利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。
圖|研之有物

註解

  • 註1:生質甲烷的概念是,透過微生物分解農業生產的有機物質,由此生產甲烷,這種有機物的碳,是來自植物光合作用的固碳反應。因此理論上不會使用到地底下的化石碳,比天然氣還要減碳。

延伸閱讀:

研之有物│中央研究院_96
255 篇文章 ・ 2467 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

2
1

文字

分享

0
2
1
【水獺媽媽專欄:從日常學永續】我也好想像太陽一樣,可以發光又發電!
PanSci_96
・2022/11/02 ・830字 ・閱讀時間約 1 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「隨手關燈,節能減碳」這是在我們日常生活中,絕對會看見或聽見的標語!在家裡被爸爸媽媽隨時叮嚀、到學校被老師耳提面命、忘記關燈而被罵的記憶肯定不會少。

建立節能好習慣很重要,但我們現在還有哪些跟能源相關的永續行動呢?

台灣的發電來源,主要仰賴燃煤、燃氣等化石燃料,比重高達80%,但提供穩定電量讓人類使用的同時,卻也大量排放二氧化碳及空氣汙染物、加劇氣候變遷,灰濛濛的天空就是最直接的證據。

近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。

像是今年夏天,家長跟小朋友都很期待的「班班有冷氣」政策,除了讓大家可以舒適上課,也同步規劃「校校會發電」,降低對地球的負擔。

近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。圖/水獺媽媽提供

不過大家有發現,學校的發電設備裝在哪裡嗎?

原本烈日長期曝曬,又熱又空的學校頂樓,竟然可以搖身一變,成為設置太陽能板的最佳基地!而當地球最豐沛的資源——陽光,照射到板內的矽晶片時,光子會撞擊電子並產生電流。

這些我們肉眼看不到的次原子粒子,卻悄悄在太陽能板中移動,而且發電的過程不會排放任何溫室氣體,也不會造成空氣汙染,非常不可思議!

陽光照射到板內的矽晶片時,光子會撞擊電子並產生電流。圖/水獺媽媽提供

也許我們都沒想過,學校可以從原本「電的消費者」變成「電的供給者」,將能源轉型落實在校園中,那麼大家趕快找個時間,去看看自己的學校,有沒有用來發電的太陽能板吧!

隨手關燈,一起節能愛地球!圖/水獺媽媽提供
PanSci_96
1035 篇文章 ・ 1347 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。