0

0
0

文字

分享

0
0
0

人工智慧浪潮來襲怎麼辦?給社會新鮮人的三個職涯建議!──《LIFE 3.0》

天下文化_96
・2018/07/31 ・4946字 ・閱讀時間約 10 分鐘 ・SR值 583 ・九年級

  • 在人工智慧崛起的現在,你希望看見甚麼樣的未來?當人工智慧超越人類時,人類該何去何從?人工智慧對犯罪、戰爭、司法、工作、社會將造成甚麼影響?又會帶給生而為人的我們甚麼感受?《LIFE 3.0》將毫不隱諱呈現這個最具爭議性話題的全方位觀點,舉凡超人工智慧所代表的意義,意識究竟是怎麼一回事,甚至是宇宙生命發展最終的物理法則定律極限,包羅萬象的豐富內容,盡皆收錄在《LIFE 3.0》中。
  • 迎接人工智慧時代,你我都該上的 30堂必修課
人工智慧將在就業市場造成什麼樣的改變,進而影響身為勞動階級的我們?圖/geralt @pixabay

人工智慧將在就業市場造成什麼樣的改變,進而影響身為勞動階級的我們?如果我們能找出透過自動化創造富裕,同時又不會讓人失去收入和使命的辦法,就有機會創造輕鬆寫意的美好未來,帶給每個人夢想中前所未有的富裕。對於這樣的願景,沒有多少人比我在麻省理工學院的同事、經濟學家布林優夫森(Erik Brynjolfsson)想得更透澈。雖然他總是衣著得體,但是內心深處依舊保有冰島人獨特的靈魂,前不久他為了更加融入商學院才略加修剪儀容,而我卻始終忘不了他一臉維京人式紅色虯髯大鬍的模樣。

所幸他腦海中狂野的想法並沒有跟著鬍子一起剔除,他還把自己對就業市場樂觀的期望稱做「數位雅典城」(Digital Athens)。古代的雅典公民之所以能享有民主、藝術和遊樂的安逸生活,主要因素不外乎是有一群奴隸代為從事勞動工作,所以我們為什麼不用具備人工智慧的機器人取代古代的奴隸,建立人人都能樂在其中的數位烏托邦?布林優夫森認為,以人工智慧推動經濟發展,不但能夠一方面消除工作的壓力和苦差事,另一方面如我們現在所願生產出各式各樣豐富的產品,更可以超乎現在消費者的想像,提供各種奇妙的新產品與新服務。

科技發展與分配不均──最富有1%與後頭90%的人命運大不同

只要從現在起,我們每個人的薪資待遇都能逐年成長,將來就能走進布林優夫森描述的數位雅典城,讓每個人的工作量愈來愈少,生活水準愈來愈高,過著充裕休閒的生活。

美國自二次世界大戰後一直到1970年代,就是循這樣的模式發展:

在1970年代以前,不論是有錢人還是窮人,收入大致都維持同步成長,之後大多數成長則集中到財富頂端1%的人手中,而後90%族群的平均收入幾乎可以說是文風不動。圖中數字都已經依照2017年的幣值進行過通貨膨脹的調整。

雖然收入分配有所不均,但是經濟大餅維持一路成長,幾乎雨露均霑的讓所有人都得到更多好處。不過布林優夫森等人開始注意到,自1970年代以後,事情發展有些不一樣了:圖中的經濟規模雖然還是維持成長的趨勢,平均收入也跟著水漲船高,但是過去四十多年來成長的果實卻都流入最富有的一群人手中,甚至幾乎只進入最富有1%的人的口袋裡,而後頭90%的人卻發現自己的收入止步不前

-----廣告,請繼續往下閱讀-----
過去四十多年來成長的果實卻都流入最富有的一群人手中,甚至幾乎只進入最富有1%的人的口袋裡,而後頭90%的人卻發現自己的收入止步不前。圖/giphy

如果我們把觀察指標從收入換成財富,分配不均惡化的情況會益發明顯:美國90%家庭在2012年的淨資產是八萬五千美元(跟二十五年前一模一樣),而最富有1%家庭的淨資產即便經過通貨膨脹,在這段期間的成長仍舊超過了一倍,達到一千四百萬美元。以全球的角度來看,分配不均的差距更是極端。2013年全球排名後半段所有人(總共超過三十六億人)的整體財富,剛好跟全球前八名首富的財富旗鼓相當。這個統計數字完全應驗了「朱門酒肉臭,路有凍死骨」這句話。

2015年在波多黎各的那場研討會上,布林優夫森語重心長的向各路人工智慧專家表示,他同意人工智慧和自動化技術的進步會讓經濟大餅愈做愈大,但是並沒有任何一條經濟定律能保證所有人都能獲利,就連是否能讓大多數人得利都得打上問號。

分配不均問題出在哪?──傳統工作被取代、資本優勢更明顯、超級巨星理論

大多數經濟學家都同意,分配不均的現象愈來愈明顯,不過對於成因及未來發展趨勢的看法卻大相徑庭。政治立場傾向左派的人認為,全球化再加上對富人有利的減稅政策,是造成分配惡化的主因,而布林優夫森和他在麻省理工學院的同僚麥克費(AndrewMcAfee)則認為真正的成因是另外一回事:科技發展。針對數位科技對分配不均的影響。他們提出三種不同的分析角度。

首先,科技發展使傳統工作由需要更高度技能的工作取代,因而凸顯教育的重要性:自1970年代中葉開始,順利畢業取得文憑的勞工薪資待遇提升了25%,而中學輟學的勞工平均而言則少了30%的薪資待遇。

1970年代中葉開始,順利畢業取得文憑的勞工薪資待遇提升了25%,而中學輟學的勞工平均而言則少了30%的薪資待遇。圖/ptksgc @pixabay

其次,他們認為自從2000年開始,企業營利以前所未見的比率流向企業主,而不是往勞動階級移動—只要自動化的趨勢維持不變,不難想見擁有機器設備的人一定會分到比較多的經濟成果。在進入數位經濟的年代後,資本相對於勞力的優勢只會更為明顯,一如科技趨勢專家尼葛洛龐帝(Nicholas Negroponte)提出的觀點:

-----廣告,請繼續往下閱讀-----

這是由原子世界蛻變至位元世界的過程。現在不論是書本、電影還是稅務試算表都已經數位化,往世界各地多賣幾份商品所增加的成本趨近於零,而且還不用額外增聘員工。這個趨勢自然會讓投資人而不是員工取得大多數的收益,也能解釋為什麼底特律三大公司(通用汽車、福特汽車和克萊斯勒),2014年的合併營收幾乎和矽谷三大公司(Google、蘋果和臉書)不相上下,但是後者的員工人數不但只有前者的九分之一,在股市中的價值更是前者的三十倍以上。

第三,布林優夫森等人認為,超級巨星會比一般民眾更容易享有數位經濟的好處。哈利波特的作者J.K.羅琳(J.K. Rowling)成為有史以來第一位晉升為億萬富翁的作家,她比莎士比亞更有錢的祕訣在於,她的故事內容可以用極低的成本轉換成文字、電影和遊戲等各種不同形式供世人傳頌。

哈利波特的作者J.K.羅琳(J.K. Rowling)成為有史以來第一位晉升為億萬富翁的作家,她比莎士比亞更有錢的祕訣在於,她的故事內容可以用極低的成本轉換成文字、電影和遊戲等各種不同形式供世人傳頌。圖/維基百科

相同的道理,庫克(Scott Cook)藉由自己開發的稅務軟體TurboTax致富,這套軟體當然也異於一般人類的稅務會計,是可以從網路上購買的。至於排名第十的稅務軟體,大多數人不管再便宜也沒多大意願使用,因此這個市場裡能容下的自然只剩下少數幾位超級巨星了。

給孩子的職涯建議:朝目前機器還不擅長的領域發展

在這種情況下,我們到底能給孩子什麼樣的職涯建議?我會鼓勵我的孩子朝目前機器還不擅長的領域發展,以免在不久的將來淪為自動化作業的犧牲品。如果要預測各種工作大概多久以後會由機器取代,不妨先參考以下幾個有用的問題,再決定將來要就讀哪些科系,進入什麼領域就業:

  • 這個領域需要運用社交手腕和他人互動嗎?
  • 這個領域需要運用創意提出巧妙的解決方案嗎?
  • 這個領域需要在無法預測的環境下工作嗎?

當你愈能用肯定的方式回答,你選到好工作的機率就愈大。換句話說,幾個相對安全的職業項目分別是:教師、護理師、醫師、牙醫、科學家、創業者、程式設計師、工程師、律師、社工人員、神職人員、藝術工作者、美髮師或是推拿師傅。

-----廣告,請繼續往下閱讀-----
需要運用社交手腕、運用創意提出巧妙的解決方案,以及需要在無法預測的環境下工作等職業,是較建議的職涯選擇。如藝術工作者。圖/Free-Photos @pixabay

相較之下,在可預期的環境下重複執行高度結構化的動作,這種工作型態在自動化的影響下可就岌岌可危了。電腦和工業機器人早就已經接手簡單到不行的工作,隨著科技持續演化,受取代的工作只會愈來愈多,諸如電話行銷、倉儲管理、櫃台職員、列車司機、麵包師傅和廚房助手都算在內。接下來,開卡車、巴士、計程車的司機,甚至就連Uber和Lyft的駕駛都可能是下一波被取代的對象。另外還有很多職業項目(比方說律師助理、徵信業者、放款業務、記帳人員和稅務會計等)雖然不至於列入全面取代的危險名單,但是大多數工作內容還是能被納入自動化的作業流程中,使得人力需求大幅減少。

單是設法和自動化作業保持距離,還不足以完全克服將來職場上的挑戰,當全世界都進入數位化的年代,想要成為專業的作家、製片、演員、運動員或時尚設計師,還要面臨另一項風險:雖然這些職業短時間之內不會立即面臨機器帶來的激烈競爭,但是回顧先前提到的超級巨星理論,這些領域一樣要面對來自全世界的專業人士帶來的愈來愈嚴酷競爭壓力,真正能成為贏家的人可以說是少之又少。

職涯建議:不可預期的環境、非重複執行、非高度結構化的工作

通常來講,如果要對所有領域、所有層級的工作做出職涯建議,未免流於太過草率:很多工作並不會完全消失,但也會有很大一部分被自動化取代。如果你打算行醫,千萬別擔任分析醫療影像的放射科醫師,因為IBM的華生電腦會做得比你更好,不妨考慮擔任有資格要求做出放射影像分析,可以拿著檢驗報告跟病患商討要如何進行後續診療的醫師。

如果你打算行醫,千萬別擔任分析醫療影像的放射科醫師,因為IBM的華生電腦會做得比你更好。圖/Wikimedia Commons

如果你想往金融界發展,千萬別擔任只會拿數字套用演算法的「寬客」(quant),這種工作可以輕易被軟體取代,倒是可以考慮擔任利用量化分析做出投資策略的基金經理人。如果你擅長的領域是法律,那就別以埋首文件找資料的律師助理自滿,這種工作靠自動化作業就可以了,你應該要以能提供客戶諮詢服務,能站上法庭進行官司訴訟的律師為目標。

-----廣告,請繼續往下閱讀-----

以上,我們說明了在人工智慧年代下,個人如何在就業市場盡可能擴大自己成功的機會。政府部門能夠做些什麼,好幫助國內的勞動力邁向成功?像是什麼樣的教育體系最能夠幫助民眾做好準備進入職場謀生,不用擔心人工智慧持續快速的改善?現行先經過十幾、二十年的求學階段,隨後將四十年的歲月都投入專業領域的模式仍舊適用嗎?或者改成先工作幾年,用一年的時間回到學校加強技能,之後再重回工作崗位,依此不斷重複循環的體系比較好?還是說,我們應該讓推廣教育(或許是以線上授課的方式進行)成為所有工作的標準配套措施?

另外,什麼又是最有助於創造優質新工作的經濟政策?麥克費認為,很多政策都值得考慮,像是在研發、教育和基礎建設等方面進行大規模投資,吸引外國人才融入本國社會,還有提供誘因鼓勵創業等政策皆屬之。他認為「經濟學原理在教科書上都寫得一清二楚,問題是沒有人有辦法照著做」,起碼美國就沒有做到這一點。

 

 

本文摘自《LIFE 3.0:人工智慧時代,人類的蛻變與重生》,天下文化出版。

 

 

延伸閱讀:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1258 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1619字 ・閱讀時間約 3 分鐘

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。