0

0
0

文字

分享

0
0
0

人工智慧浪潮來襲怎麼辦?給社會新鮮人的三個職涯建議!──《LIFE 3.0》

天下文化_96
・2018/07/31 ・4946字 ・閱讀時間約 10 分鐘 ・SR值 583 ・九年級
  • 在人工智慧崛起的現在,你希望看見甚麼樣的未來?當人工智慧超越人類時,人類該何去何從?人工智慧對犯罪、戰爭、司法、工作、社會將造成甚麼影響?又會帶給生而為人的我們甚麼感受?《LIFE 3.0》將毫不隱諱呈現這個最具爭議性話題的全方位觀點,舉凡超人工智慧所代表的意義,意識究竟是怎麼一回事,甚至是宇宙生命發展最終的物理法則定律極限,包羅萬象的豐富內容,盡皆收錄在《LIFE 3.0》中。
  • 迎接人工智慧時代,你我都該上的 30堂必修課
人工智慧將在就業市場造成什麼樣的改變,進而影響身為勞動階級的我們?圖/geralt @pixabay

人工智慧將在就業市場造成什麼樣的改變,進而影響身為勞動階級的我們?如果我們能找出透過自動化創造富裕,同時又不會讓人失去收入和使命的辦法,就有機會創造輕鬆寫意的美好未來,帶給每個人夢想中前所未有的富裕。對於這樣的願景,沒有多少人比我在麻省理工學院的同事、經濟學家布林優夫森(Erik Brynjolfsson)想得更透澈。雖然他總是衣著得體,但是內心深處依舊保有冰島人獨特的靈魂,前不久他為了更加融入商學院才略加修剪儀容,而我卻始終忘不了他一臉維京人式紅色虯髯大鬍的模樣。

所幸他腦海中狂野的想法並沒有跟著鬍子一起剔除,他還把自己對就業市場樂觀的期望稱做「數位雅典城」(Digital Athens)。古代的雅典公民之所以能享有民主、藝術和遊樂的安逸生活,主要因素不外乎是有一群奴隸代為從事勞動工作,所以我們為什麼不用具備人工智慧的機器人取代古代的奴隸,建立人人都能樂在其中的數位烏托邦?布林優夫森認為,以人工智慧推動經濟發展,不但能夠一方面消除工作的壓力和苦差事,另一方面如我們現在所願生產出各式各樣豐富的產品,更可以超乎現在消費者的想像,提供各種奇妙的新產品與新服務。

科技發展與分配不均──最富有1%與後頭90%的人命運大不同

只要從現在起,我們每個人的薪資待遇都能逐年成長,將來就能走進布林優夫森描述的數位雅典城,讓每個人的工作量愈來愈少,生活水準愈來愈高,過著充裕休閒的生活。

美國自二次世界大戰後一直到1970年代,就是循這樣的模式發展:

在1970年代以前,不論是有錢人還是窮人,收入大致都維持同步成長,之後大多數成長則集中到財富頂端1%的人手中,而後90%族群的平均收入幾乎可以說是文風不動。圖中數字都已經依照2017年的幣值進行過通貨膨脹的調整。

雖然收入分配有所不均,但是經濟大餅維持一路成長,幾乎雨露均霑的讓所有人都得到更多好處。不過布林優夫森等人開始注意到,自1970年代以後,事情發展有些不一樣了:圖中的經濟規模雖然還是維持成長的趨勢,平均收入也跟著水漲船高,但是過去四十多年來成長的果實卻都流入最富有的一群人手中,甚至幾乎只進入最富有1%的人的口袋裡,而後頭90%的人卻發現自己的收入止步不前

過去四十多年來成長的果實卻都流入最富有的一群人手中,甚至幾乎只進入最富有1%的人的口袋裡,而後頭90%的人卻發現自己的收入止步不前。圖/giphy

如果我們把觀察指標從收入換成財富,分配不均惡化的情況會益發明顯:美國90%家庭在2012年的淨資產是八萬五千美元(跟二十五年前一模一樣),而最富有1%家庭的淨資產即便經過通貨膨脹,在這段期間的成長仍舊超過了一倍,達到一千四百萬美元。以全球的角度來看,分配不均的差距更是極端。2013年全球排名後半段所有人(總共超過三十六億人)的整體財富,剛好跟全球前八名首富的財富旗鼓相當。這個統計數字完全應驗了「朱門酒肉臭,路有凍死骨」這句話。

2015年在波多黎各的那場研討會上,布林優夫森語重心長的向各路人工智慧專家表示,他同意人工智慧和自動化技術的進步會讓經濟大餅愈做愈大,但是並沒有任何一條經濟定律能保證所有人都能獲利,就連是否能讓大多數人得利都得打上問號。

分配不均問題出在哪?──傳統工作被取代、資本優勢更明顯、超級巨星理論

大多數經濟學家都同意,分配不均的現象愈來愈明顯,不過對於成因及未來發展趨勢的看法卻大相徑庭。政治立場傾向左派的人認為,全球化再加上對富人有利的減稅政策,是造成分配惡化的主因,而布林優夫森和他在麻省理工學院的同僚麥克費(AndrewMcAfee)則認為真正的成因是另外一回事:科技發展。針對數位科技對分配不均的影響。他們提出三種不同的分析角度。

首先,科技發展使傳統工作由需要更高度技能的工作取代,因而凸顯教育的重要性:自1970年代中葉開始,順利畢業取得文憑的勞工薪資待遇提升了25%,而中學輟學的勞工平均而言則少了30%的薪資待遇。

1970年代中葉開始,順利畢業取得文憑的勞工薪資待遇提升了25%,而中學輟學的勞工平均而言則少了30%的薪資待遇。圖/ptksgc @pixabay

其次,他們認為自從2000年開始,企業營利以前所未見的比率流向企業主,而不是往勞動階級移動—只要自動化的趨勢維持不變,不難想見擁有機器設備的人一定會分到比較多的經濟成果。在進入數位經濟的年代後,資本相對於勞力的優勢只會更為明顯,一如科技趨勢專家尼葛洛龐帝(Nicholas Negroponte)提出的觀點:

這是由原子世界蛻變至位元世界的過程。現在不論是書本、電影還是稅務試算表都已經數位化,往世界各地多賣幾份商品所增加的成本趨近於零,而且還不用額外增聘員工。這個趨勢自然會讓投資人而不是員工取得大多數的收益,也能解釋為什麼底特律三大公司(通用汽車、福特汽車和克萊斯勒),2014年的合併營收幾乎和矽谷三大公司(Google、蘋果和臉書)不相上下,但是後者的員工人數不但只有前者的九分之一,在股市中的價值更是前者的三十倍以上。

第三,布林優夫森等人認為,超級巨星會比一般民眾更容易享有數位經濟的好處。哈利波特的作者J.K.羅琳(J.K. Rowling)成為有史以來第一位晉升為億萬富翁的作家,她比莎士比亞更有錢的祕訣在於,她的故事內容可以用極低的成本轉換成文字、電影和遊戲等各種不同形式供世人傳頌。

哈利波特的作者J.K.羅琳(J.K. Rowling)成為有史以來第一位晉升為億萬富翁的作家,她比莎士比亞更有錢的祕訣在於,她的故事內容可以用極低的成本轉換成文字、電影和遊戲等各種不同形式供世人傳頌。圖/維基百科

相同的道理,庫克(Scott Cook)藉由自己開發的稅務軟體TurboTax致富,這套軟體當然也異於一般人類的稅務會計,是可以從網路上購買的。至於排名第十的稅務軟體,大多數人不管再便宜也沒多大意願使用,因此這個市場裡能容下的自然只剩下少數幾位超級巨星了。

給孩子的職涯建議:朝目前機器還不擅長的領域發展

在這種情況下,我們到底能給孩子什麼樣的職涯建議?我會鼓勵我的孩子朝目前機器還不擅長的領域發展,以免在不久的將來淪為自動化作業的犧牲品。如果要預測各種工作大概多久以後會由機器取代,不妨先參考以下幾個有用的問題,再決定將來要就讀哪些科系,進入什麼領域就業:

  • 這個領域需要運用社交手腕和他人互動嗎?
  • 這個領域需要運用創意提出巧妙的解決方案嗎?
  • 這個領域需要在無法預測的環境下工作嗎?

當你愈能用肯定的方式回答,你選到好工作的機率就愈大。換句話說,幾個相對安全的職業項目分別是:教師、護理師、醫師、牙醫、科學家、創業者、程式設計師、工程師、律師、社工人員、神職人員、藝術工作者、美髮師或是推拿師傅。

需要運用社交手腕、運用創意提出巧妙的解決方案,以及需要在無法預測的環境下工作等職業,是較建議的職涯選擇。如藝術工作者。圖/Free-Photos @pixabay

相較之下,在可預期的環境下重複執行高度結構化的動作,這種工作型態在自動化的影響下可就岌岌可危了。電腦和工業機器人早就已經接手簡單到不行的工作,隨著科技持續演化,受取代的工作只會愈來愈多,諸如電話行銷、倉儲管理、櫃台職員、列車司機、麵包師傅和廚房助手都算在內。接下來,開卡車、巴士、計程車的司機,甚至就連Uber和Lyft的駕駛都可能是下一波被取代的對象。另外還有很多職業項目(比方說律師助理、徵信業者、放款業務、記帳人員和稅務會計等)雖然不至於列入全面取代的危險名單,但是大多數工作內容還是能被納入自動化的作業流程中,使得人力需求大幅減少。

單是設法和自動化作業保持距離,還不足以完全克服將來職場上的挑戰,當全世界都進入數位化的年代,想要成為專業的作家、製片、演員、運動員或時尚設計師,還要面臨另一項風險:雖然這些職業短時間之內不會立即面臨機器帶來的激烈競爭,但是回顧先前提到的超級巨星理論,這些領域一樣要面對來自全世界的專業人士帶來的愈來愈嚴酷競爭壓力,真正能成為贏家的人可以說是少之又少。

職涯建議:不可預期的環境、非重複執行、非高度結構化的工作

通常來講,如果要對所有領域、所有層級的工作做出職涯建議,未免流於太過草率:很多工作並不會完全消失,但也會有很大一部分被自動化取代。如果你打算行醫,千萬別擔任分析醫療影像的放射科醫師,因為IBM的華生電腦會做得比你更好,不妨考慮擔任有資格要求做出放射影像分析,可以拿著檢驗報告跟病患商討要如何進行後續診療的醫師。

如果你打算行醫,千萬別擔任分析醫療影像的放射科醫師,因為IBM的華生電腦會做得比你更好。圖/Wikimedia Commons

如果你想往金融界發展,千萬別擔任只會拿數字套用演算法的「寬客」(quant),這種工作可以輕易被軟體取代,倒是可以考慮擔任利用量化分析做出投資策略的基金經理人。如果你擅長的領域是法律,那就別以埋首文件找資料的律師助理自滿,這種工作靠自動化作業就可以了,你應該要以能提供客戶諮詢服務,能站上法庭進行官司訴訟的律師為目標。

以上,我們說明了在人工智慧年代下,個人如何在就業市場盡可能擴大自己成功的機會。政府部門能夠做些什麼,好幫助國內的勞動力邁向成功?像是什麼樣的教育體系最能夠幫助民眾做好準備進入職場謀生,不用擔心人工智慧持續快速的改善?現行先經過十幾、二十年的求學階段,隨後將四十年的歲月都投入專業領域的模式仍舊適用嗎?或者改成先工作幾年,用一年的時間回到學校加強技能,之後再重回工作崗位,依此不斷重複循環的體系比較好?還是說,我們應該讓推廣教育(或許是以線上授課的方式進行)成為所有工作的標準配套措施?

另外,什麼又是最有助於創造優質新工作的經濟政策?麥克費認為,很多政策都值得考慮,像是在研發、教育和基礎建設等方面進行大規模投資,吸引外國人才融入本國社會,還有提供誘因鼓勵創業等政策皆屬之。他認為「經濟學原理在教科書上都寫得一清二楚,問題是沒有人有辦法照著做」,起碼美國就沒有做到這一點。

 

 

本文摘自《LIFE 3.0:人工智慧時代,人類的蛻變與重生》,天下文化出版。

 

 

延伸閱讀:


數感宇宙探索課程,現正募資中!

文章難易度
天下文化_96
98 篇文章 ・ 578 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。


0

2
4

文字

分享

0
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook